Skip to main content

Robotic Platform with Visual Paradigm to Induce Motor Learning in Healthy Subjects

  • Conference paper
  • First Online:
ROBOT 2017: Third Iberian Robotics Conference (ROBOT 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 694))

Included in the following conference series:

Abstract

Recent projects highlight how motor learning and a high level of attention control can potentially improve submaximal force production during recovery after stroke. This study focuses on the assessment of detailed metrics of force production and position control -healthy subjects- and their correlation with submaximal force production control learning during a new task consisting in maintaining the position for early rehabilitation after stroke.

We used a Motorized Ankle Foot Orthosis (MAFO) with zero-torque control together with a visual paradigm interface to exert controlled torque profiles to the ankle of the subject. The subject is asked to follow the trajectories in the visual interface, while the robot disturbs the movement. The aim of the exercise is to improve the motor control by learning how to maintain the position to follow the trajectory, compensating the perturbations, in three possible training paradigms: (1) fixed torque, (2) progressive increase of torque, and (3) modulated torque based on score on the task.

All training paradigms led to an improvement in the score comparing pre and post-training performances, so we concluded that this platform induces learning on healthy subjects.

To sum up, we conclude that this tool is useful to induce learning in healthy subjects, and thus will keep improving the training paradigms, for the translation into a rehabilitative tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cramer, S.C., Sur, M., Dobkin, B.H., O’brien, C., Sanger, T.D., Trojanowski, J.Q., Rumsey, J.M., Hicks, R., Cameron, J., Chen, D., et al.: Harnessing neuroplasticity for clinical applications. Brain 134(6), 1591–1609 (2011)

    Google Scholar 

  2. Cano-de-la Cuerda, R., Molero-Sánchez, A., Carratalá-Tejada, M., Alguacil-Diego, I.M., Molina-Rueda, F., Miangolarra-Page, J.C., Torricelli, D.: Theories and control models and motor learning: clinical applications in neurorehabilitation. Neurología (English Edition) 30(1), 32–41 (2015)

    Google Scholar 

  3. Asín-Prieto, G., Cano-de-la Cuerda, R., López-Larraz, E., Metrot, J., Molinari, M., van Dokkum, L.E.H.: Emerging perspectives in stroke rehabilitation. In: Emerging Therapies in Neurorehabilitation, pp. 3–21. Springer (2014)

    Google Scholar 

  4. Nudo, R.J., Wise, B.M., SiFuentes, F., Milliken, G.W.: Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 272(5269), 1791 (1996)

    Google Scholar 

  5. Langhorne, P., Coupar, F., Pollock, A.: Motor recovery after stroke: a systematic review. Lancet Neurol. 8(8), 741–754 (2009)

    Article  Google Scholar 

  6. Patton, J.L., Mussa-Ivaldi, F.A.: Robot-assisted adaptive training: custom force fields for teaching movement patterns. IEEE Trans. Biomed. Eng. 51(4), 636–646 (2004)

    Article  Google Scholar 

  7. Shea, J.B., Morgan, R.L.: Contextual interference effects on the acquisition, retention, and transfer of a motor skill. J. Exp. Psychol. Hum. Learn. Memory 5(2), 179 (1979)

    Article  Google Scholar 

  8. Krakauer, J.W.: Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr. Opin. Neurol. 19(1), 84–90 (2006)

    Article  Google Scholar 

  9. Shea, C.H., Kohl, R.M.: Composition of practice: influence on the retention of motor skills. Res. Q. Exerc. Sport 62(2), 187–195 (1991)

    Article  Google Scholar 

  10. Conditt, M.A., Gandolfo, F., Mussa-Ivaldi, F.A.: The motor system does not learn the dynamics of the arm by rote memorization of past experience. J. Neurophysiol. 78(1), 554–560 (1997)

    Google Scholar 

  11. Fasoli, S.E., Krebs, H.I., Stein, J., Frontera, W.R., Hogan, N.: Effects of robotic therapy on motor impairment and recovery in chronic stroke. Archives Phys. Med. Rehabil. 84(4), 477–482 (2003)

    Article  Google Scholar 

  12. Volpe, B.T., Krebs, H.I., Hogan, N., Edelstein, L., Diels, C., Aisen, M.: A novel approach to stroke rehabilitation robot-aided sensorimotor stimulation. Neurology 54(10), 1938–1944 (2000)

    Article  Google Scholar 

  13. Krebs, H.I., Hogan, N., Aisen, M.L., Volpe, B.T.: Robot-aided neurorehabilitation. IEEE Trans. Rehabil. Eng. 6(1), 75–87 (1998)

    Article  Google Scholar 

  14. Reinkensmeyer, D.J., Patton, J.L.: Can robots help the learning of skilled actions? Exerc. Sport Sci. Rev. 37(1), 43 (2009)

    Article  Google Scholar 

  15. Todorov, E., Shadmehr, R., Bizzi, E.: Augmented feedback presented in a virtual environment accelerates learning of a difficult motor task. J. Motor Behav. 29(2), 147–158 (1997)

    Article  Google Scholar 

  16. Liu, J., Cramer, S.C., Reinkensmeyer, D.J.: Learning to perform a new movement with robotic assistance: comparison of haptic guidance and visual demonstration. J. Neuroeng. Rehabil. 3(1), 20 (2006)

    Article  Google Scholar 

  17. Dobkin, B.H.: Strategies for stroke rehabilitation. Lancet Neurol. 3(9), 528–536 (2004)

    Article  Google Scholar 

  18. Emken, J.L., Reinkensmeyer, D.J.: Robot-enhanced motor learning: accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Trans. Neural Syst. Rehabil. Eng. 13(1), 33–39 (2005)

    Article  Google Scholar 

  19. Patton, J.L., Stoykov, M.E., Kovic, M., Mussa-Ivaldi, F.A.: Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Exp. Brain Res. 168(3), 368–383 (2006)

    Article  Google Scholar 

  20. Scheidt, R.A., Dingwell, J.B., Mussa-Ivaldi., F.A.: Learning to move amid uncertainty. J. Neurophysiol. 86(2), 971–985 (2001)

    Google Scholar 

  21. Emken, J.L., Benitez, R., Sideris, A., Bobrow, J.E., Reinkensmeyer, D.J.: Motor adaptation as a greedy optimization of error and effort. J. Neurophysiol. 97(6), 3997–4006 (2007)

    Article  Google Scholar 

  22. Bittmann, M.F., Patton, J.L.: Forces that supplement visuomotor learning: a “sensory crossover” experiment. IEEE Trans. Neural Syst. Rehabil. Eng. 25(8), 1109–1116 (2017)

    Article  Google Scholar 

  23. Patton, J.L., Mussa-Ivaldi, F.A., Rymer, W.Z.: Altering movement patterns in healthy and brain-injured subjects via custom designed robotic forces. In: Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2, pp. 1356–1359. IEEE (2001)

    Google Scholar 

  24. Leroux, A., Pinet, H., Nadeau, S.: Task-oriented intervention in chronic stroke: changes in clinical and laboratory measures of balance and mobility. Am. J. Phys. Med. Rehabil. 85(10), 820–830 (2006)

    Article  Google Scholar 

  25. Duncan, P.W., Goldstein, L.B., Horner, R.D., Landsman, P.B., Samsa, G.P., Matchar, D.B.: Similar motor recovery of upper and lower extremities after stroke. Stroke 25(6), 1181–1188 (1994)

    Article  Google Scholar 

  26. Lamontagne, A., Malouin, F., Richards, C.L., Dumas, F.: Mechanisms of disturbed motor control in ankle weakness during gait after stroke. Gait Posture 15(3), 244–255 (2002)

    Article  Google Scholar 

  27. Page, S.J., Gater, D.R., Rita, P.B.: Reconsidering the motor recovery plateau in stroke rehabilitation. Arch. Phys. Med. Rehabil. 85(8), 1377–1381 (2004)

    Article  Google Scholar 

  28. Panjan, A., Simunic, B., Sarabon, N.: Maximal voluntary torque and the ability to finely grade submaximal torque are not related/sposobnost finega uravnavanja submaksimalnega navora ni povezana z najvecjim hotenim navorom. Kinesiologia Slovenica 17(3), 5 (2011)

    Google Scholar 

Download references

Acknowledgements

This research has been funded by the Commission of the European Union under the BioMot project - Smart Wearable Robots with Bioinspired Sensory-Motor Skills (Grant Agreement number IFP7-ICT- 2013-10-611695, and partially supported with grant RYC-2014-16613 by Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Asín-Prieto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asín-Prieto, G., González, J.E., Pons, J.L., Moreno, J.C. (2018). Robotic Platform with Visual Paradigm to Induce Motor Learning in Healthy Subjects. In: Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C. (eds) ROBOT 2017: Third Iberian Robotics Conference. ROBOT 2017. Advances in Intelligent Systems and Computing, vol 694. Springer, Cham. https://doi.org/10.1007/978-3-319-70836-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70836-2_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70835-5

  • Online ISBN: 978-3-319-70836-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics