Skip to main content

The Role of Reproductive Genetics in Modern Andrology

  • Chapter
  • First Online:
Book cover Intracytoplasmic Sperm Injection

Abstract

Proper care of the infertile male includes a diagnosis of the underlying etiology and counseling regarding the known ramifications for the patient and potential offspring. This necessitates a thorough screening of potential genetic anomalies, including karyotype abnormalities, Y chromosome microdeletions, and relevant gene mutations. Additionally, the sperm may possess aneuploidies, independent of the patient’s somatic karyotype, or DNA strand breaks that can decrease the potential of successful embryogenesis. The novel field of sperm epigenetics has indicated that sperm epigenetic anomalies, in the form of DNA methylation, chromatin, and RNA alterations, can also affect fertility potential and may be moderated by lifestyle and environmental influences. These genetic anomalies not only affect the fertility of the patient, but may also be reflective of general health concerns in the patient and offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CBAVD:

Congenital bilateral absence of the vas deferens

CFTR:

Cystic fibrosis transmembrane conductance regulator

CpGs:

Cytosine-phosphate-guanine dinucleotides

MicroTESE:

Micro-surgical testicular sperm extraction

NSS:

No sperm seen

YCMD:

Y chromosome microdeletion

References

  1. Carrell DT, Aston KI, Oliva R, Emery BR, De Jonge CJ. The “omics” of human male infertility: integrating big data in a systems biology approach. Cell Tissue Res. 2016;363(1):295–312.

    Article  CAS  PubMed  Google Scholar 

  2. Hamazaki T, El Rouby N, Fredette NC, Santostefano KE, Terada N. Concise review: induced pluripotent stem cell research in the era of precision medicine. Stem Cells. 2017;35(3):545–50.

    Article  PubMed  Google Scholar 

  3. Jenkins TG, Aston KI, James ER, Carrell DT. Sperm epigenetics in the study of male fertility, offspring health, and potential clinical applications. Syst Biol Reprod Med. 2017;63(2):69–76.

    Article  PubMed  Google Scholar 

  4. Chira S, Gulei D, Hajitou A, Zimta AA, Cordelier P, Berindan-Neagoe I. CRISPR/Cas9: transcending the reality of genome editing. Mol Ther Nucleic Acids. 2017;7:211–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mehta A, Nangia AK, Dupree JM, Smith JF. Limitations and barriers in access to care for male factor infertility. Fertil Steril. 2016;105(5):1128–37.

    Article  PubMed  Google Scholar 

  6. Glazer CH, Bonde JP, Eisenberg ML, Giwercman A, Haervig KK, Rimborg S, et al. Male infertility and risk of nonmalignant chronic diseases: a systematic review of the epidemiological evidence. Semin Reprod Med. 2017;35(3):282–90.

    Article  PubMed  Google Scholar 

  7. Hanson HA, Anderson RE, Aston KI, Carrell DT, Smith KR, Hotaling JM. Subfertility increases risk of testicular cancer: evidence from population-based semen samples. Fertil Steril. 2016;105(2):322–8 e1.

    Article  PubMed  Google Scholar 

  8. Anderson RE, Hanson HA, Patel DP, Johnstone E, Aston KI, Carrell DT, et al. Cancer risk in first- and second-degree relatives of men with poor semen quality. Fertil Steril. 2016;106(3):731–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rehm HL. Evolving health care through personal genomics. Nat Rev Genet. 2017;18(4):259–67.

    Article  CAS  PubMed  Google Scholar 

  10. National Guideline C. The evaluation of the azoospermic male: AUA best practice statement.

    Google Scholar 

  11. National Guideline C. The optimal evaluation of the infertile male: AUA best practice statement.

    Google Scholar 

  12. Hotaling J, Carrell DT. Clinical genetic testing for male factor infertility: current applications and future directions. Andrology. 2014;2(3):339–50.

    Article  CAS  PubMed  Google Scholar 

  13. Hotaling JM, Patel Z. Male endocrine dysfunction. Urol Clin North Am. 2014;41(1):39–53.

    Article  PubMed  Google Scholar 

  14. Hotaling JM. Genetics of male infertility. Urol Clin North Am. 2014;41(1):1–17.

    Article  PubMed  Google Scholar 

  15. Bonde JP, Flachs EM, Rimborg S, Glazer CH, Giwercman A, Ramlau-Hansen CH, et al. The epidemiologic evidence linking prenatal and postnatal exposure to endocrine disrupting chemicals with male reproductive disorders: a systematic review and meta-analysis. Hum Reprod Update. 2016;23(1):104–25.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Craig JR, Jenkins TG, Carrell DT, Hotaling JM. Obesity, male infertility, and the sperm epigenome. Fertil Steril. 2017;107(4):848–59.

    Article  PubMed  Google Scholar 

  17. Foresta C, Ferlin A, Gianaroli L, Dallapiccola B. Guidelines for the appropriate use of genetic tests in infertile couples. Eur J Hum Genet. 2002;10(5):303–12.

    Article  PubMed  Google Scholar 

  18. Groth KA, Skakkebaek A, Host C, Gravholt CH, review BAC. Klinefelter syndrome—a clinical update. J Clin Endocrinol Metab. 2013;98(1):20–30.

    Article  CAS  PubMed  Google Scholar 

  19. Bojesen A, Gravholt CH. Klinefelter syndrome in clinical practice. Nat Clin Pract Urol. 2007;4(4):192–204.

    Article  PubMed  Google Scholar 

  20. Bojesen A, Juul S, Gravholt CH. Prenatal and postnatal prevalence of Klinefelter syndrome: a national registry study. J Clin Endocrinol Metab. 2003;88(2):622–6.

    Article  CAS  PubMed  Google Scholar 

  21. Aksglaede L, Wikstrom AM, Rajpert-De Meyts E, Dunkel L, Skakkebaek NE, Juul A. Natural history of seminiferous tubule degeneration in Klinefelter syndrome. Hum Reprod Update. 2006;12(1):39–48.

    Article  PubMed  Google Scholar 

  22. Plotton I, Giscard d’Estaing S, Cuzin B, Brosse A, Benchaib M, Lornage J, et al. Preliminary results of a prospective study of testicular sperm extraction in young versus adult patients with nonmosaic 47,XXY Klinefelter syndrome. J Clin Endocrinol Metab. 2015;100(3):961–7.

    Article  CAS  PubMed  Google Scholar 

  23. Paduch DA, Fine RG, Bolyakov A, Kiper J. New concepts in Klinefelter syndrome. Curr Opin Urol. 2008;18(6):621–7.

    Article  PubMed  Google Scholar 

  24. Kohn TP, Kohn JR, Darilek S, Ramasamy R, Lipshultz L. Genetic counseling for men with recurrent pregnancy loss or recurrent implantation failure due to abnormal sperm chromosomal aneuploidy. J Assist Reprod Genet. 2016;33(5):571–6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Borjian Boroujeni P, Sabbaghian M, Vosough Dizaji A, Zarei Moradi S, Almadani N, Mohammadpour Lashkari F, et al. Clinical aspects of infertile 47,XYY patients: a retrospective study. Hum Fertil (Camb). 2017:1–6.

    Google Scholar 

  26. Stouffs K, Vloeberghs V, Gheldof A, Tournaye H, Seneca S. Are AZFb deletions always incompatible with sperm production? Andrology. 2017;5(4):691–4.

    Article  CAS  PubMed  Google Scholar 

  27. Liou TG, Rubenstein RC. Carrier screening, incidence of cystic fibrosis, and difficult decisions. JAMA. 2009;302(23):2595–6.

    Article  CAS  PubMed  Google Scholar 

  28. Southern KW. Cystic fibrosis and formes frustes of CFTR-related disease. Respiration. 2007;74(3):241–51.

    Article  PubMed  Google Scholar 

  29. Grzegorczyk V, Rives N, Sibert L, Dominique S, Mace B. Management of male infertility due to congenital bilateral absence of vas deferens should not ignore the diagnosis of cystic fibrosis. Andrologia. 2012;44(5):358–62.

    Article  CAS  PubMed  Google Scholar 

  30. Bach PV, Schlegel PN. Sperm DNA damage and its role in IVF and ICSI. Basic Clin Androl. 2016;26:15.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Harton GL, Tempest HG. Chromosomal disorders and male infertility. Asian J Androl. 2012;14(1):32–9.

    Article  PubMed  Google Scholar 

  32. Rudak E, Jacobs PA, Yanagimachi R. Direct analysis of the chromosome constitution of human spermatozoa. Nature. 1978;274(5674):911–3.

    Article  CAS  PubMed  Google Scholar 

  33. Emery BR. Sperm aneuploidy testing using fluorescence in situ hybridization. Methods Mol Biol. 2013;927:167–73.

    Article  CAS  PubMed  Google Scholar 

  34. Carrell DT. The clinical implementation of sperm chromosome aneuploidy testing: pitfalls and promises. J Androl. 2008;29(2):124–33.

    Article  PubMed  Google Scholar 

  35. Hwang K, Weedin JW, Lamb DJ. The use of fluorescent in situ hybridization in male infertility. Ther Adv Urol. 2010;2(4):157–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gianaroli L, Magli MC, Cavallini G, Crippa A, Nadalini M, Bernardini L, et al. Frequency of aneuploidy in sperm from patients with extremely severe male factor infertility. Hum Reprod. 2005;20(8):2140–52.

    Article  PubMed  Google Scholar 

  37. Hassold TJ. Nondisjunction in the human male. Curr Top Dev Biol. 1998;37:383–406.

    Article  CAS  PubMed  Google Scholar 

  38. Shi Q, Martin RH. Aneuploidy in human spermatozoa: FISH analysis in men with constitutional chromosomal abnormalities, and in infertile men. Reproduction. 2001;121(5):655–66.

    Article  CAS  PubMed  Google Scholar 

  39. Anton E, Vidal F, Blanco J. Interchromosomal effect analyses by sperm FISH: incidence and distribution among reorganization carriers. Syst Biol Reprod Med. 2011;57(6):268–78.

    Article  CAS  PubMed  Google Scholar 

  40. Tempest HG. Meiotic recombination errors, the origin of sperm aneuploidy and clinical recommendations. Syst Biol Reprod Med. 2011;57(1–2):93–101.

    Article  PubMed  Google Scholar 

  41. Zhang X, San Gabriel M, Zini A. Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J Androl. 2006;27(3):414–20.

    Article  PubMed  Google Scholar 

  42. Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27(6):890–8.

    Article  CAS  PubMed  Google Scholar 

  43. Zini A, Garrels K, Phang D. Antioxidant activity in the semen of fertile and infertile men. Urology. 2000;55(6):922–6.

    Article  CAS  PubMed  Google Scholar 

  44. Koca Y, Ozdal OL, Celik M, Unal S, Balaban N. Antioxidant activity of seminal plasma in fertile and infertile men. Arch Androl. 2003;49(5):355–9.

    Article  CAS  PubMed  Google Scholar 

  45. Simon L, Zini A, Dyachenko A, Ciampi A, Carrell DT. A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl. 2017;19(1):80–90.

    PubMed  Google Scholar 

  46. Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril. 2008;89(4):823–31.

    Article  PubMed  Google Scholar 

  47. Zini A, Sigman M. Are tests of sperm DNA damage clinically useful? Pros and cons. J Androl. 2009;30(3):219–29.

    Article  CAS  PubMed  Google Scholar 

  48. Tuttelmann F, Laan M, Grigorova M, Punab M, Sober S, Gromoll J. Combined effects of the variants FSHB -211G>T and FSHR 2039A>G on male reproductive parameters. J Clin Endocrinol Metab. 2012;97(10):3639–47.

    Article  PubMed  Google Scholar 

  49. Wei B, Xu Z, Ruan J, Zhu M, Jin K, Zhou D, et al. MTHFR 677C>T and 1298A>C polymorphisms and male infertility risk: a meta-analysis. Mol Biol Rep. 2012;39(2):1997–2002.

    Article  CAS  PubMed  Google Scholar 

  50. Song X, Zhao Y, Cai Q, Zhang Y, Niu Y. Association of the Glutathione S-transferases M1 and T1 polymorphism with male infertility: a meta-analysis. J Assist Reprod Genet. 2013;30(1):131–41.

    Article  PubMed  Google Scholar 

  51. Dode C, Hardelin JP. Clinical genetics of Kallmann syndrome. Ann Endocrinol (Paris). 2010;71(3):149–57.

    Article  CAS  Google Scholar 

  52. Hu Z, Xia Y, Guo X, Dai J, Li H, Hu H, et al. A genome-wide association study in Chinese men identifies three risk loci for non-obstructive azoospermia. Nat Genet. 2012;44(2):183–6.

    Article  CAS  Google Scholar 

  53. Zhao H, Xu J, Zhang H, Sun J, Sun Y, Wang Z, et al. A genome-wide association study reveals that variants within the HLA region are associated with risk for nonobstructive azoospermia. Am J Hum Genet. 2012;90(5):900–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aston KI, Carrell DT. Genome-wide study of single-nucleotide polymorphisms associated with azoospermia and severe oligozoospermia. J Androl. 2009;30(6):711–25.

    Article  CAS  PubMed  Google Scholar 

  55. Aston KI, Conrad DF. A review of genome-wide approaches to study the genetic basis for spermatogenic defects. Methods Mol Biol. 2013;927:397–410.

    Article  CAS  PubMed  Google Scholar 

  56. Dalgaard MD, Weinhold N, Edsgard D, Silver JD, Pers TH, Nielsen JE, et al. A genome-wide association study of men with symptoms of testicular dysgenesis syndrome and its network biology interpretation. J Med Genet. 2012;49(1):58–65.

    Article  PubMed  Google Scholar 

  57. Qin Y, Ji J, Du G, Wu W, Dai J, Hu Z, et al. Comprehensive pathway-based analysis identifies associations of BCL2, GNAO1 and CHD2 with non-obstructive azoospermia risk. Hum Reprod. 2014;29(4):860–6.

    Article  CAS  PubMed  Google Scholar 

  58. Lu C, Xu M, Wang R, Qin Y, Ren J, Wu W, et al. A genome-wide association study of mitochondrial DNA in Chinese men identifies two risk single nucleotide substitutions for idiopathic oligoasthenospermia. Mitochondrion. 2015;24:87–92.

    Article  CAS  PubMed  Google Scholar 

  59. Hu Z, Li Z, Yu J, Tong C, Lin Y, Guo X, et al. Association analysis identifies new risk loci for non-obstructive azoospermia in Chinese men. Nat Commun. 2014;5:3857.

    CAS  PubMed  Google Scholar 

  60. Yu J, Wu H, Wen Y, Liu Y, Zhou T, Ni B, et al. Identification of seven genes essential for male fertility through a genome-wide association study of non-obstructive azoospermia and RNA interference-mediated large-scale functional screening in drosophila. Hum Mol Genet. 2015;24(5):1493–503.

    Article  CAS  PubMed  Google Scholar 

  61. Ni B, Lin Y, Sun L, Zhu M, Li Z, Wang H, et al. Low-frequency germline variants across 6p22.2–6p21.33 are associated with non-obstructive azoospermia in Han Chinese men. Hum Mol Genet. 2015;24(19):5628–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tuttelmann F, Simoni M, Kliesch S, Ledig S, Dworniczak B, Wieacker P, et al. Copy number variants in patients with severe oligozoospermia and sertoli-cell-only syndrome. PLoS One. 2011;6(4):e19426.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Song SH, Shim SH, Bang JK, Park JE, Sung SR, Cha DH. Genome-wide screening of severe male factor infertile patients using BAC-array comparative genomic hybridization (CGH). Gene. 2012;506(1):248–52.

    Article  CAS  PubMed  Google Scholar 

  64. Krausz C, Giachini C, Lo Giacco D, Daguin F, Chianese C, Ars E, et al. High resolution X chromosome-specific array-CGH detects new CNVs in infertile males. PLoS One. 2012;7(10):e44887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stouffs K, Vandermaelen D, Massart A, Menten B, Vergult S, Tournaye H, et al. Array comparative genomic hybridization in male infertility. Hum Reprod. 2012;27(3):921–9.

    Article  CAS  PubMed  Google Scholar 

  66. Eggers S, DeBoer KD, van den Bergen J, Gordon L, White SJ, Jamsai D, et al. Copy number variation associated with meiotic arrest in idiopathic male infertility. Fertil Steril. 2015;103(1):214–9.

    Article  PubMed  Google Scholar 

  67. Lopes AM, Aston KI, Thompson E, Carvalho F, Goncalves J, Huang N, et al. Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1. PLoS Genet. 2013;9(3):e1003349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jorgez CJ, Wilken N, Addai JB, Newberg J, Vangapandu HV, Pastuszak AW, et al. Genomic and genetic variation in E2F transcription factor-1 in men with nonobstructive azoospermia. Fertil Steril. 2015;103(1):44–52 e1.

    Article  CAS  PubMed  Google Scholar 

  69. Fruhmesser A, Vogt PH, Zimmer J, Witsch-Baumgartner M, Fauth C, Zschocke J, et al. Single nucleotide polymorphism array analysis in men with idiopathic azoospermia or oligoasthenozoospermia syndrome. Fertil Steril. 2013;100(1):81–7.

    Article  PubMed  Google Scholar 

  70. Halder A, Kumar P, Jain M, Iyer VK. Copy number variations in testicular maturation arrest. Andrology. 2017;5(3):460–72.

    Article  CAS  PubMed  Google Scholar 

  71. Dong Y, Pan Y, Wang R, Zhang Z, Xi Q, Liu RZ. Copy number variations in spermatogenic failure patients with chromosomal abnormalities and unexplained azoospermia. Genet Mol Res. 2015;14(4):16041–9.

    Article  CAS  PubMed  Google Scholar 

  72. Yatsenko AN, Georgiadis AP, Ropke A, Berman AJ, Jaffe T, Olszewska M, et al. X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. N Engl J Med. 2015;372(22):2097–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lima AC, Carvalho F, Goncalves J, Fernandes S, Marques PI, Sousa M, et al. Rare double sex and mab-3-related transcription factor 1 regulatory variants in severe spermatogenic failure. Andrology. 2015;3(5):825–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tewes AC, Ledig S, Tuttelmann F, Kliesch S, Wieacker P. DMRT1 mutations are rarely associated with male infertility. Fertil Steril. 2014;102(3):816–20. e3

    Article  CAS  PubMed  Google Scholar 

  75. Yang F, Silber S, Leu NA, Oates RD, Marszalek JD, Skaletsky H, et al. TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse. EMBO Mol Med. 2015;7(9):1198–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zariwala MA, Gee HY, Kurkowiak M, Al-Mutairi DA, Leigh MW, Hurd TW, et al. ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am J Hum Genet. 2013;93(2):336–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Okutman O, Muller J, Baert Y, Serdarogullari M, Gultomruk M, Piton A, et al. Exome sequencing reveals a nonsense mutation in TEX15 causing spermatogenic failure in a Turkish family. Hum Mol Genet. 2015;24(19):5581–8.

    Article  CAS  PubMed  Google Scholar 

  78. Wilfert AB, Chao KR, Kaushal M, Jain S, Zollner S, Adams DR, et al. Genome-wide significance testing of variation from single case exomes. Nat Genet. 2016;48(12):1455–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Telenti A, Pierce LC, Biggs WH, di Iulio J, Wong EH, Fabani MM, et al. Deep sequencing of 10,000 human genomes. Proc Natl Acad Sci U S A. 2016;113(42):11901–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aston KI, Uren PJ, Jenkins TG, Horsager A, Cairns BR, Smith AD, et al. Aberrant sperm DNA methylation predicts male fertility status and embryo quality. Fertil Steril. 2015;104(6):1388–97 e1–5.

    Article  Google Scholar 

  81. Hammoud SS, Low DH, Yi C, Carrell DT, Guccione E, Cairns BR. Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell. 2014;15(2):239–53.

    Article  CAS  PubMed  Google Scholar 

  82. Jenkins TG, Aston KI, Cairns BR, Carrell DT. Paternal aging and associated intraindividual alterations of global sperm 5-methylcytosine and 5-hydroxymethylcytosine levels. Fertil Steril. 2013;100(4):945–51.

    Article  CAS  PubMed  Google Scholar 

  83. Jenkins TG, Aston KI, Hotaling JM, Shamsi MB, Simon L, Carrell DT. Teratozoospermia and asthenozoospermia are associated with specific epigenetic signatures. Andrology. 2016;4(5):843–9.

    Article  CAS  PubMed  Google Scholar 

  84. Jenkins TG, Aston KI, Meyer TD, Hotaling JM, Shamsi MB, Johnstone EB, et al. Decreased fecundity and sperm DNA methylation patterns. Fertil Steril. 2016;105(1):51–7 e1–51–7 e3.

    Google Scholar 

  85. Jodar M, Selvaraju S, Sendler E, Diamond MP, Krawetz SA, Reproductive Medicine N. The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update. 2013;19(6):604–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jodar M, Sendler E, Moskovtsev SI, Librach CL, Goodrich R, Swanson S, et al. Absence of sperm RNA elements correlates with idiopathic male infertility. Sci Transl Med. 2015;7(295):295re6.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68.

    Article  CAS  PubMed  Google Scholar 

  88. WHO. Laboratory Manual for the Examination an Processing of Human Semen Annali dell’Istituto superiore di sanita. 2010;5th ed(1).

    Google Scholar 

  89. Poland ML, Moghissi KS, Giblin PT, Ager JW, Olson JM. Variation of semen measures within normal men. Fertil Steril. 1985;44(3):396–400.

    Article  CAS  PubMed  Google Scholar 

  90. Yuan S, Tang C, Zhang Y, Wu J, Bao J, Zheng H, et al. mir-34b/c and mir-449a/b/c are required for spermatogenesis, but not for the first cleavage division in mice. Biol Open. 2015;4(2):212–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu WM, Pang RT, Chiu PC, Wong BP, Lao K, Lee KF, et al. Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci U S A. 2012;109(2):490–4.

    Article  CAS  PubMed  Google Scholar 

  92. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hammoud SS, Nix DA, Hammoud AO, Gibson M, Cairns BR, Carrell DT. Genome-wide analysis identifies changes in histone retention and epigenetic modifications at developmental and imprinted gene loci in the sperm of infertile men. Hum Reprod. 2011;26(9):2558–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):227.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Auger J, Mesbah M, Huber C, Dadoune JP. Aniline blue staining as a marker of sperm chromatin defects associated with different semen characteristics discriminates between proven fertile and suspected infertile men. Int J Androl. 1990;13(6):452–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas T. Carrell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carrell, D.T., Jenkins, T.G., Emery, B.R., Hotaling, J.M., Aston, K.I. (2018). The Role of Reproductive Genetics in Modern Andrology. In: Palermo, G., Sills, E. (eds) Intracytoplasmic Sperm Injection. Springer, Cham. https://doi.org/10.1007/978-3-319-70497-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70497-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70496-8

  • Online ISBN: 978-3-319-70497-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics