Skip to main content

Experimental Setup

  • Chapter
  • First Online:
On the Direct Detection of 229m Th

Part of the book series: Springer Theses ((Springer Theses))

  • 280 Accesses

Abstract

The experiments performed within the scope of this thesis were aiming for a first direct detection and unambiguous identification of the isomeric decay of \(^{229\mathrm {m}}\)Th. It was known from theory that several competing decay channels of \(^{229\mathrm {m}}\)Th exist (Strizhov VF, Tkalya EV in Sov Phys JETP 72:387, 1991, [1]), (Karpeshin FF, Trzhaskovskaya MB in Phys Rev C 76:054313, 2007, [2]) (see Sect. 2.2). These include the photonic decay, decay via internal conversion (IC), decay via electronic bridge processes (EB) as well as \(\alpha \) decay (Strizhov VF, Tkalya EV in Sov Phys JETP 72:387, 1991, [1]), (Dykhne AM et al in JETP Lett 64:345–349, 1996, [3]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In other studies, a large neutral fraction of \(\alpha \)-recoil isotopes was found [34]. That the ionic fraction dominates in the considered case is most likely due to stripping of the \(\alpha \)-recoil nuclides in the source material.

  2. 2.

    Note, that this is a simplification, as for a correct calculation of the electron energies the work function \(\Phi \) of the surface material and the electon’s binding energy \(E_\text {b}\) below the fermi-edge have to be taken into account: \(E_\text {e}=E_\gamma -\Phi -E_\text {b}\). As CsI exhibits a work function of 6.2 eV, no significant correction for the maximum energy of the electrons is expected.

References

  1. Strizhov VF, Tkalya EV (1991) Decay channel of low-lying isomer state of the \(^{229}\)Th nucleus. Possibilities of experimental investigation. Sov Phys JETP 72:387

    Google Scholar 

  2. Karpeshin FF, Trzhaskovskaya MB (2007) Impact of the electron environment on the lifetime of the \(^{229}\)Th\(^m\) low-lying isomer. Phys Rev C 76:054313

    Article  ADS  Google Scholar 

  3. Dykhne AM et al (1996) Alpha decay of the first excited state of the Th-229 nucleus. JETP Lett 64:345–349

    Article  ADS  Google Scholar 

  4. Tkalya EV et al (2000) Decay of the low-energy nuclear isomer \(^{229}\)Th\(^m\)(3/2\(^+\), 3.5\(\pm \)1.0 eV) in solids (dielectrics and metals): a new scheme of experimental research. Phys Rev C 61:064308

    Article  ADS  Google Scholar 

  5. Tkalya EV (1999) Nonradiative decay of the low-lying nuclear isomer \(^{229m}\)Th (3.5eV) in a metal. JETP Lett 70:371–374

    Article  ADS  Google Scholar 

  6. Tkalya EV et al (2015) Radiative lifetime and energy of the low-energy isomeric level in \(^{229}\)Th. Phys Rev C 92:054324

    Article  ADS  Google Scholar 

  7. von der Wense L et al (2016) Direct detection of the \(^{229}\)Th nuclear clock transition. Nature 533:47–51

    Article  ADS  Google Scholar 

  8. Thirolf PG et al (2007) Optical access to the lowest nuclear transition in \(^{229\rm m}\)Th. Garching, Annual Report of the Maier-Leibnitz Laboratory, p 18

    Google Scholar 

  9. von der Wense L et al (2013) Towards a direct transition energy measurement of the lowest nuclear excitation in \(^{229}\)Th. JINST 8:P03005

    Google Scholar 

  10. Barci V et al (2003) Nuclear structure of \(^{229}\)Th from \(\gamma \)-ray spectroscopy study of \(^{233}\)U \(\alpha \)-particle decay. Phys Rev C 68:034329

    Article  ADS  Google Scholar 

  11. Rellergert WG et al (2010) Constraining the evolution of the fundamental constants with a solid-state optical frequency reference based on the \(^{229}\)Th nucleus. Phys Rev Lett 104:200802

    Article  ADS  Google Scholar 

  12. Porsev SG et al (2010) Excitation of the isomeric \(^{229m}\)Th nuclear state via an electronic bridge process in \(^{229}\)Th\(^+\). Phys Rev Lett 105:182501

    Article  ADS  Google Scholar 

  13. Neumayr JB et al (2006) Performance of the MLL-Ion catcher. Rev Sci Instrum 77:065109

    Article  ADS  Google Scholar 

  14. Neumayr JB (2004) The buffer-gas cell and the extraction RFQ for SHIPTRAP. Ph.D. thesis, LMU Munich, Germany

    Google Scholar 

  15. Neumayr JB et al (2006) The ion-catcher device for SHIPTRAP. Nucl Instrum Methods B 244:489–500

    Article  ADS  Google Scholar 

  16. von der Wense L et al (2015) Determination of the extraction efficiency for \(^{233}\)U source \(\alpha \)-recoil ions from the MLL buffer-gas stopping cell. Eur Phys J A 51:29

    Article  ADS  Google Scholar 

  17. Haettner E (2011) A novel radio frequency quadrupole system for SHIPTRAP & New mass measurements of rp nuclides. Ph.D. thesis, University of Giessen, Germany

    Google Scholar 

  18. von der Wense L et al (2016) The extraction of \(^{229}\)Th\(^{3+}\) from a buffer-gas stopping cell. Nucl Instrum Methods B 376:260–264

    Article  ADS  Google Scholar 

  19. Seiferle B et al (2016) A VUV detection system for the direct photonic identification of the first excited isomeric state of \(^{229}\)Th. Eur Phys J D 70:58

    Article  ADS  Google Scholar 

  20. Dessovic P et al (2014) \(^{229}\)Thorium-doped calcium fluoride for nuclear laser spectroscopy. J Phys Condens Matter 26:105402

    Article  Google Scholar 

  21. Wilbrandt S et al (2016) Aluminum reflectors for the DUV and VUV, IOF annual report (2011). http://www.iof.fraunhofer.de/content/dam/iof/en/documents/publications/annual-report/2011/reflectors-duv-vuv-2011-wilbrandt.pdf. Accessed 16 Aug 2016

  22. Wiza JL (1979) Microchannel plate detectors. Nucl Instrum Methods 162:587–601

    Article  ADS  Google Scholar 

  23. Carruthers GR (1988) Further investigation of CsI-coated microchannel plate quantum efficiencies. Appl Opt 27:5157–5159

    Article  ADS  Google Scholar 

  24. Vascon A et al (2012) Elucidation of constant current density molecular plating. Nucl Instrum Methods A 696:180–191

    Article  ADS  Google Scholar 

  25. Vascon A et al (2013) Smooth crack-free targets for nuclear applications produced by molecular plating. Nucl Instrum Methods A 714:163–175

    Article  ADS  Google Scholar 

  26. Vascon A et al (2013) The performance of thin layers produced by molecular plating as \(\alpha \)-particle sources. Nucl Instrum Methods A 721:35–44

    Article  ADS  Google Scholar 

  27. Maier HJ, Grossmann R, Friebel HU (1991) Radioactive targets for nuclear accelerator experiments. Nucl Instrum Methods B 56–57:926–932

    Article  Google Scholar 

  28. Grossmann R, Maier HJ, Friebel HU (1997) The new hot-lab facility for radioactive target preparation at the University of Munich. Nucl Instrum Methods A 397:39–45

    Article  ADS  Google Scholar 

  29. NNDC Interactive Chart of Nuclides (2016) Brookhaven National Laboratory, Brookhaven. http://www.nndc.bnl.gov/chart. Accessed 22 Mar 2016

  30. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in matter. Pergamon, New York

    Book  Google Scholar 

  31. Nordlund K (1995) Molecular dynamics simulation of ion ranges in the 1–100 keV energy range. Comput Mater Sci 3:448–456

    Article  Google Scholar 

  32. Henderson RA et al (2011) Electrodeposition of U and Pu on thin C and Ti substrates. Nucl Instrum Methods A 655:66–71

    Article  ADS  Google Scholar 

  33. Wakeling MA (2014) Charge states of \(^{229\text{m}}\)Th: Path to finding the half-life, Thesis performed at LLNL, Livermore (2014)

    Google Scholar 

  34. Wandkowsky N et al (2013) Modeling of electron emission processes accompanying radon-\(\alpha \)-decays within electrostatic spectrometers. New J Phys 15:083040

    Article  Google Scholar 

  35. Yu K et al (2001) A gas cell for thermalizing, storing and transporting radioactive ions and atoms. Part 1: Off-line studies with a laser ion source. Nucl Instrum Methods B 179:412–435

    Article  Google Scholar 

  36. Taylor SE et al (2008) Pulsed Laval nozzle study of the kinetics of OH with unsaturated hydrocarbons at very low temperatures. Phys Chem Chem Phys 10:422–437

    Article  Google Scholar 

  37. Brubaker WM (1968) An improved quadrupole mass analyser. Adv Mass Spectrom 4:293–299

    Google Scholar 

  38. Dawson PH (1976) Quadrupole mass spectrometry and its applications. Elsevier Scientific Pub. Co., Amsterdam

    Google Scholar 

  39. Kalb D (2012) Entwicklung eines Regelsystems zum Przisionsabgleich der RF-Amplituden eines Quadrupole-Massenspektrometers, Bachelor thesis, LMU Munich, Germany (in German)

    Google Scholar 

  40. Abdelrahman MM et al (2012) SIMION calculations for the triode extraction system. Int J Theor Math Phys 2:122–129

    Article  Google Scholar 

  41. Soliman BA et al (2011) Simulation of ion beam extraction and focusing system. Chin Phys C 35:83–87

    Article  ADS  Google Scholar 

  42. Dahl DA et al (1990) SIMION PC/PS2 electrostatic lens design program. Rev Sci Imstrum 61:607–609

    Article  ADS  Google Scholar 

  43. Porsev SG, Flambaum VV (2010) Effect of atomic electrons on the 7.6 eV nuclear transition in \(^{229m}\)Th\(^{3+}\). Phys Rev A 81:032504

    Article  ADS  Google Scholar 

  44. Porsev SG, Flambaum VV (2010) Electronic bridge process in \(^{229}\)Th\(^+\). Phys Rev A 81:042516

    Article  ADS  Google Scholar 

  45. Jeet J et al (2015) Results of a direct search using synchrotron radiation for the low-energy \(^{229}\)Th nuclear isomeric transition. Phys Rev Lett 114:253001

    Article  ADS  Google Scholar 

  46. Borisyuk PV et al (2015) Band structure and decay channels of thorium-229 low lying isomeric state for ensemble of thorium atoms adsorbed on calcium fluoride. Phys Status Solidi C 12:1333–1337

    Article  ADS  Google Scholar 

  47. Budenstein PP et al (1969) Destructive breakdown in thin films of SiO, MgF\(_2\), CaF\(_2\), CeF\(_3\), CeO\(_2\), and teflon. J Vac Sci Tech 6:289–303

    Article  ADS  Google Scholar 

  48. Seiferle B (2015) Setup of a VUV detection system for the direct identification of the fluorescence radiation of \(^{229\text{ m }}\)Th, Master thesis, LMU Munich, Germany

    Google Scholar 

  49. Goruganthu RR, Wilson WG (1984) Relative electron detection efficiency of microchannel plates from 0–3 keV. Rev Sci Instrum 55:2030–2033

    Article  ADS  Google Scholar 

  50. Barnstedt J (2016) Advanced practical course microchannel plate detectors University of T\(\ddot{u}\)bingen (2016). http://www.uni-tuebingen.de/fileadmin/Uni_Tuebingen/Fakultaeten/MathePhysik/Institute/IAAT/AIT/Lehrveranstaltungen/F-Praktikum/Dokumente/VersuchsAnleitungMCP_english.pdf. Accessed 16 Aug 2016

  51. Oberheide J et al (1997) New results on the absolute ion detection efficiencies of a microchannel plate. Meas Sci Technol 8:351–354

    Article  ADS  Google Scholar 

  52. Peko BL et al (2000) Absolute detection efficiencies of low energy H, H\(^-\), H\(^+\), H\(^+_2\), H\(^+_3\) incident on a multichannel plate detector. Nucl Instrum Methods B 171:597–604

    Article  ADS  Google Scholar 

  53. Stephen TM et al (2000) Absolute calibration of a multichannel plate detector for low energy O, O\(^-\), and O\(^+\). Rev Sci Instrum 71:1355–1359

    Article  ADS  Google Scholar 

  54. Bay HL, Winters HF, Coufal HJ, Eckstein W (1992) Energy transfer to a copper surface by low energy noble gas ion bombardment. Appl Phys A 55:174–278

    Article  Google Scholar 

  55. Maier-Komor P et al (2002) VUV reflective coatings on thin concave float glass substrates with a perimeter of 86 cm to be used as provisional HADES RICH mirror segments. Nucl Instrum Methods A 480:65

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Von der Wense .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Von der Wense, L. (2018). Experimental Setup. In: On the Direct Detection of 229m Th. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-70461-6_4

Download citation

Publish with us

Policies and ethics