Skip to main content

The Neurological Spectrum of HIV Infection

  • Chapter
  • First Online:
CNS Infections

Abstract

Neurological manifestations are frequent in human immunodeficiency virus (HIV)-infected patients and represent a great diagnostic and therapeutic challenge. They may be caused by many different mechanisms: the HIV, opportunistic infections or tumors, autoimmunity, and complications of systemic diseases or drugs, including the antiretrovirals. Patients may suffer several simultaneous neurological diseases, and the HIV and some opportunistic infections may affect simultaneously various levels in the nervous system. Highly active antiretroviral therapy (HAART) has produced a decline in opportunistic diseases and neurological disorders associated with severe immune depression. However, the prolonged survival of patients has increased morbidity due to chronic disorders, such as cerebrovascular disease and HIV-associated neurocognitive disorders. The central nervous system constitutes a reservoir for HIV replication in patients with controlled systemic disease. HAART itself is related to new emerging neurological problems: the specific neurotoxicity of the drugs and the appearance of neurological immune reconstitution inflammatory syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brew BJ. Medical management of AIDS patients. Central and peripheral nervous system abnormalities. Med Clin North Am. 1992;76:63–81.

    Article  CAS  PubMed  Google Scholar 

  2. Gray F, Gherardi R, Scaravilli F. The neuropathology of the acquired immune deficiency syndrome (AIDS). A review. Brain. 1988;111(Pt 2):245–66.

    Article  PubMed  Google Scholar 

  3. Bowen LN, Smith B, Reich D, Quezado M, Nath A. HIV-associated opportunistic CNS infections: pathophysiology, diagnosis and treatment. Nat Rev Neurol. 2016;12:662–74.

    Article  CAS  PubMed  Google Scholar 

  4. Maschke M, Kastrup O, Esser S, Ross B, Hengge U, Hufnagel A. Incidence and prevalence of neurological disorders associated with HIV since the introduction of highly active antiretroviral therapy (HAART). J Neurol Neurosurg Psychiatry. 2000;69:376–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Casado JL, Corral I, García J, Martinez-San Millán J, Navas E, Moreno A, et al. Continued declining incidence and improved survival of progressive multifocal leukoencephalopathy in HIV/AIDS patients in the current era. Eur J Clin Microbiol Infect Dis. 2014;33:179–87.

    Article  CAS  PubMed  Google Scholar 

  6. Sacktor N, Lyles RH, Skolasky MA, Kleeberger MAS, Selnes OA, Miller EN, et al. HIV-associated neurologic disease incidence changes: Multicenter AIDS Cohort Study, 1990-1998. Neurology. 2001;56:257–60.

    Article  CAS  PubMed  Google Scholar 

  7. Peluso MJ, Meyerhoff DJ, Price RW, Peterson J, Lee E, Young AC, et al. Cerebrospinal fluid and neuroimaging biomarker abnormalities suggest early neurological injury in a subset of individuals during primary HIV infection. J Infect Dis. 2013;207:1703–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Young AC, Yiannoutsos CT, Hegde M, Lee E, Peterson J, Walter R, et al. Cerebral metabolite changes prior and after antiretroviral therapy in primary HIV infection. Neurology. 2014;83:1592–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kore I, Ananworanich J, Valcour V, Fletcher JL, Chalermchai T, Paul R, et al. Neuropsychological impairment in acute HIV and the effect of immediate antiretroviral therapy. J Acquir Immune Defic Syndr. 2015;70:393–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wiley CA, Achim C. Human immunodeficiency virus encephalitis and dementia. Ann Neurol. 1995;38:559–60.

    Article  CAS  PubMed  Google Scholar 

  11. Bai F, Iannuzzi F, Merlini E, Borgui L, Tincati C, Trunfio M, et al. Clinical and viro-immunological correlates of HIV-associated neurocognitive disorders (HAND) in a cohort of antiretroviral-naïve HIV-infected patients. AIDS. 2017;31:311–4.

    Article  CAS  PubMed  Google Scholar 

  12. Navia BA, Jordan BD, Price RW. The AIDS-dementia complex: I. Clinical features. Ann Neurol. 1986;19:517–24.

    Article  CAS  PubMed  Google Scholar 

  13. Maruff P, Currie J, Malone V, McArthur JC, Mulhall B, Benson E. Neuropsychological characterization of the AIDS dementia complex and rationalization of a test battery. Arch Neurol. 1994;51:689–95.

    Article  CAS  PubMed  Google Scholar 

  14. Sacktor NC, Wong M, Nakasujja N, Skolasky RL, Selnes OA, Musisi S, et al. The International HIV Dementia Scale: a new rapid screening test for HIV dementia. AIDS. 2005;19:1367–74.

    PubMed  Google Scholar 

  15. Andersson AM, Fennema-Notestine C, Umlauf A, Taylor MJ, Clifford DB, et al. CSF biomarkers of monocyte activation and chemotaxis correlate with magnetic resonance spectroscopy metabolites during chronic HIV disease. J Neurovirol. 2015;21:559–67.

    Article  CAS  Google Scholar 

  16. Cinque P, Vago L, Ceresa D, Mainini F, Terreni MR, Vagani A, et al. Cerebrospinal fluid HIV-1 RNA levels: correlation with HIV encephalitis. AIDS. 1998;12:389–94.

    Article  CAS  PubMed  Google Scholar 

  17. Valcour VG, Shiramizu BT, Sithinamsuwan P, Nidhinandana S, Ratto-Kim S, Ananworanich J, et al. HIV DNA and cognition in a Thai longitudinal HAART initiation cohort. The SEARCH 001 Cohort Study. Neurology. 2009;72:992–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69:1789–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gisslén M, Price RW, Nilsson S. The definition of HIV-associated neurocognitive disorders: are we overestimating the real prevalence? BMC Infect Dis. 2011;11:356.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sacktor N, Robertson K. Evolving clinical phenotypes in HIV-associated neurocognitive disorders. Curr Opin HIV AIDS. 2014;9:517–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saylor D, Dickens AM, Sacktor N, Haughey N, Slusher B, Pletnikov M, et al. HIV-associated neurocognitive disorder- pathogenesis and prospects for treatment. Nat Rev Neurol. 2016;12:234–48.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cysique LA, Vaida F, Letendre S, Gibson S, Cherner M, Woods SP, et al. Dynamics of cognitive change in impaired HIV-positive patients initiating antiretroviral therapy. Neurology. 2009;73:342–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fessel WJ. Impaired neurocognition in HIV-infected patients: antecedents and treatment. AIDS. 2009;23:1731–3.

    Article  PubMed  Google Scholar 

  24. Tozzi V, Balestra P, Bellagamba R, Corpolongo A, Salvatori MF, Visco-Comandini U, et al. Persistence of neuropsychologic deficits despite long-term highly active antiretroviral therapy in patients with HIV-related neurocognitive impairment: prevalence and risk factors. J Acquir Immune Defic Syndr. 2007;45:174–82.

    Article  PubMed  Google Scholar 

  25. Heaton RK, Clifford DB, Franklin D, Woods S, Ake C, Vaida F, et al. HIV associated neurocognitive disorders (HAND) persist in the era of potent antiretroviral therapy: the CHARTER Study. Neurology. 2010;75:2087–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Simioni S, Cavassini M, Annoni JM, Rimbault Abraham A, Bourquin I, Schiffer V, et al. Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS. 2010;24:1243–50.

    PubMed  Google Scholar 

  27. McCutchan JA, Marquie-Beck J, FitzSimons JA, Letendre SL, Ellis RJ, Heaton RK, et al. Role of obesity, metabolic variables, and diabetes in HIV-associated neurocognitive disorder. Neurology. 2012;78:485–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Casado JL, Marín A, Moreno A, Iglesias V, Perez-Elías MJ, Moreno S, et al. Central nervous system antiretroviral penetration and cognitive functioning in largely pretreated HIV-infected patients. J Neurovirol. 2014;20:54–61.

    Article  CAS  PubMed  Google Scholar 

  29. Gelman BB, Lisinicchia JG, Morgello S, Masliah E, Commins D, et al. Neurovirological correlation with HIV-associated neurocognitive disorders and encephalitis in a HAART-era cohort. J Acquir Immune Defic Syndr. 2013;62:487–95.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ellis RJ, Badiee J, Vaida F, Letendre S, Heaton RK, Clifford D, et al. CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. AIDS. 2011;25:1747–51.

    Article  CAS  PubMed  Google Scholar 

  31. Cohen RA, Harezlak J, Schifitto G, Hana G, Clark U, Gongvatana A, et al. Effects of nadir CD4 count and duration of human immunodeficiency virus infection on brain volumes in the highly active antiretroviral therapy era. J Neurovirol. 2010;16:25–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bryant AK, Ellis RJ, Umlauf A, Gouaux B, Soontornniyomkij V, Letendre SL, et al. Antiretroviral therapy reduces neurodegeneration in HIV infection. AIDS. 2015;29:323–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wright EJ, Grund B, Robertson K, Brew BJ, Roediger M, Bain MP, et al. Cardiovascular risk factors associated with lower baseline cognitive performance in HIV-positive persons. Neurology. 2010;75:864–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kleefeld F, Heller S, Jessen H, Ingiliz P, Kraft A, Hahn K. Effect of interferon-free therapy on cognition in HCV and HCV/HIV infection: a pilot study. Neurology. 2017;88:713–5.

    Google Scholar 

  35. Clifford DB, Vaida F, Kao YT, Franklin DR, Letendre SL, et al. Absence of neurocognitive effect of hepatitis C infection in HIV-coinfected people. Neurology. 2015;84:241–50.

    Google Scholar 

  36. Gongvatana A, Hareslak J, Butchthal S, Daar E, Schifitto G, Campbell T, et al. Cerebral injury in the setting of chronic HIV infection and antiretroviral therapy. J Neurovirol. 2013;19:209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Valcour VG, Shiramizu BT, Sithinamsuwan P, Nidhinandana S, Ratto-Kim S, Ananworanich J, et al. HIV DNA and cognition in a Thai longitudinal HAART initiation cohort the SEARCH 001 cohort study. Neurology. 2009;72:992–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Desplats P, Dumaop W, Smith D, Adame A, Everall I, Letendre S, et al. Molecular and pathologic insights from latent HIV-1 infection in the human brain. Neurology. 2013;80:1415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Joseph J, Cinque P, Colosi D, Dravid A, Ene L, Fox H, et al. Highlights of the Global HIV-CSF Escape Consortium meeting, 9 June 2016, Methesda MD, USA. J Virus Erad. 2016;2:243–50.

    PubMed  PubMed Central  Google Scholar 

  40. Anderson AM, Muñoz-Moreno JA, McClernon DR, Ellis RJ, Cookson D, Clifford DB, et al. Prevalence and correlates of persistent HIV-1 RNA in cerebrospinal fluid during antiretroviral therapy. J Infect Dis. 2017;215:105–13.

    Article  PubMed  Google Scholar 

  41. Soulie C, Fourati S, Lambert-Niclot S, Tubiana R, Canestri A, Girard PM, et al. HIV genetic diversity between plasma and cerebrospinal fluid in patients with HIV encephalitis. AIDS. 2010;24:2412–4.

    PubMed  Google Scholar 

  42. Letendre S, Marquie-Beck J, Capparelli E, Best B, Clifford D, Collier AC, et al. Validation of the CNS penetration effectiveness rank for quantifying antiretroviral penetration into the central nervous system. Arch Neurol. 2008;65:65–70.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Spudich SS, Ances BM. CROI 2016: neurologic complications of HIV infection. Top Antivir Med. 2016;24:29–37.

    PubMed  Google Scholar 

  44. Soulie C, Deschamps D, Grudé M, Schneider V, Trabaud MA, Morand-Joubert L, et al. Antiretroviral-naive and -treated HIV-1 patients can harbour more resistant viruses in CSF than in plasma. J Antimicrob Chemother. 2015;70:566–72.

    Google Scholar 

  45. Marra CM, Zhao Y, Clifford DB, Letendre S, Evans S, Henry K, et al. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS. 2009;23:1359–66.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Smurzynski M, Wu K, Letendre S, Robertson K, Bosch RJ, Clifford DB, et al. Effects of central nervous system antiretroviral penetration on cognitive functioning in the ALLRT cohort. AIDS. 2011;25:357–65.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Robertson K, Jiang H, Kumwenda J, Supparatpinyo K, Evans S, Campbell TB, et al. Improved neuropsychological and neurological functioning across three antiretroviral regimens in diverse resource-limited settings: AIDS Clinical Trials Group study a5199, the International Neurological Study. Clin Infect Dis. 2012;55:868–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dahl V, Lee E, Peterson J, Spudich SS, Leppla I, Fuchs SE, et al. Raltegravir treatment intensification does not alter cerebrospinal fluid VIH-1 infection or immunoactivation on suppressive therapy. J Infect Dis. 2011;204:1036–45.

    Article  CAS  Google Scholar 

  49. Carvalhal A, Gill MJ, Letendre SL, Rachlis A, Bekeke T, Raboud J, et al. Central nervous system penetration effectiveness of antiretroviral drugs and neuropsychological impairment in the Ontario HIV Treatment Network cohort study. J Neurovirol. 2016;22:349–57.

    Article  CAS  PubMed  Google Scholar 

  50. Ellis RJ, Letendre S, Vaida F, Haubrich R, Heaton RK, Sacktor N, et al. Randomized trial of central nervous system-targeted antiretrovirals for HIV-associated neurocognitive disorder. Clin Infect Dis. 2014;58:1015–22.

    Article  CAS  PubMed  Google Scholar 

  51. Valcour VG, Spudich SS, Sailasuta N, Phanuphak N, Lerdium S, Fletcher JLK, et al. Neurological response to cART vs. cART plus integrase inhibitor and CCR5 antagonist initiated during acute HIV. PLoS One. 2015;10:e0142600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Caniglia EL, Cain LE, Justice A, Tate J, Logan R, Sabin S, et al. Antiretroviral penetration in the CNS and incidence of AIDS-defining neurologic conditions. Neurology. 2014;83:134–41.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Clifford DB, Fagan AM, Holtzman DM, Morris JC, Teshome M, Shah AR, et al. CSF biomarkers of Alzheimer disease in HIV-associated neurologic disease. Neurology. 2009;73:1982–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Soontornniyomkij W, Moore M, Gouaux B, Soontornniyomkij B, Tatro ET, Umlauf A, et al. Cerebral β-amyloid deposition predicts HIV-associated neurocognitive disorders in APOE e4 carriers. AIDS. 2012;26:2327–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gannon PJ, Akay-Espinoza C, Yee AC, Briand LA, Erickson MA, Gelman BB, et al. HIV protease inhibitors alter amyloid precursor protein processing via β-site amyloid precursor protein cleaving enzyme-1 translational up-regulation. Am J Pathol. 2017;187:91–109.

    Google Scholar 

  56. Flinn IW, Ambinder RF. AIDS primary central nervous system lymphoma. Curr Opin Neurol. 1996;8:373–6.

    CAS  Google Scholar 

  57. Gupta NK, Nolan A, Omuro A, Reid EG, Wang CC, Mannis G, et al. Long-term survival in AIDS-related primary central nervous system lymphoma. Neurol Oncol. 2017;19:99–108.

    Article  Google Scholar 

  58. Tan CS, Koralnik IJ. Progressive multifocal leukoencephalopathy and other disorders caused by JC virus: clinical features and pathogenesis. Lancet Neurol. 2010;9:425–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wüthrich C, Cheng YM, Joseph JT, Kesari S, Beckwith C, Stopa E, et al. Frequent infection of cerebellar granule cell neurons by polyomavirus JC in progressive multifocal leukoencephalopathy. J Neuropathol Exp Neurol. 2009;68:15–25.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lima MA, Drislane FW, Koralnik IJ. Seizures and their outcome in progressive multifocal leukoencephalopathy. Neurology. 2006;66:262–4.

    Article  PubMed  Google Scholar 

  61. Sahraian MA, Radue EW, Eshaghi A, Besliu S, Minagar A. Progressive multifocal leukoencephalopathy: a review of the neuroimaging features and differential diagnosis. Eur J Neurol. 2012;19:1060–9.

    Article  CAS  PubMed  Google Scholar 

  62. Corral I, Quereda C, Dronda F, Navas E, Hermida JM, Moreno C, et al. Progressive multifocal leukoencephalopathy mimicking milliary CNS tuberculosis. J Neurovirol. 2015;21:691–3.

    Article  PubMed  Google Scholar 

  63. Berger JR, Aksamit AJ, Clifford DB, Davis L, Koralnik IJ, Sejvar JJ, et al. PML diagnostic criteria: consensus statement from AAN Neuroinfectious Disease Section. Neurology. 2013;80:1430–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cinque P, Scarpellini P, Vago L, Linde A, Lazzarin A. Diagnosis of central nervous system complications in HIV-infected patients: cerebrospinal fluid analysis by polymerase chain reaction. AIDS. 1997;11:1–17.

    Article  CAS  PubMed  Google Scholar 

  65. Garcia De Viedma D, Diaz Infantes M, Miralles P, Berenguer J, Marin M, Muñoz L, et al. JC virus load in progressive multifocal leukoencephalopathy: analysis of the correlation between the viral burden in cerebrospinal fluid, patient survival, and the volume of neurological lesions. Clin Infect Dis. 2002;34:1568–75.

    Article  PubMed  Google Scholar 

  66. Berger JR, Levy RM, Flomenhoft D, Dobbs M. Predictive factors for prolonged survival in acquired immunodeficiency syndrome-associated progressive multifocal leukoencephalopathy. Ann Neurol. 1998;44:341–9.

    Article  CAS  PubMed  Google Scholar 

  67. Khanna N, Wolbers M, Mueller NJ, Garzoni C, Du Pasquier RA, Fux CA, et al. JC virus-specific immune responses in human immunodeficiency virus type 1 patients with progressive multifocal leukoencephalopathy. J Virol. 2009;83:4404–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Miralles P, Berenguer J, Garcia de Viedma DV, Padilla B, Cosin J, Lopez-Bernaldo-de-Quiros JC, et al. Treatment of AIDS-associated progressive multifocal leukoencephalopathy with highly active antiretroviral therapy. AIDS. 1998;12:2467–72.

    Article  CAS  PubMed  Google Scholar 

  69. Falcó V, Olmo M, Villar del Saz S, Guelar A, Santos JR, Gutiérrez M, et al. Influence of HAART on the clinical course of HIV-1–infected patients with progressive multifocal leukoencephalopathy: results of an observational multicenter study. J Acquir Immune Defic Syndr. 2008;49:26–31.

    Article  PubMed  Google Scholar 

  70. Pavlovic D, Patera AC, Nyberg F, Gerber M, Liu M. Progressive Multifocal Leukoencephalopathy Consortium. Progressive multifocal leukoencephalopathy: current treatment options and future perspectives. Ther Adv Neurol Disord. 2015;8:255–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Arribas JR, Storch GA, Clifford DB, Tselis AC. Cytomegalovirus encephalitis. Ann Intern Med. 1996;125:577–87.

    Article  CAS  PubMed  Google Scholar 

  72. Grassi MP, Clerici F, Perin C, d’Arminio MA, Vago L, Borella M, et al. Microglial nodular encephalitis and ventriculoencephalitis due to cytomegalovirus infection in patients with AIDS: two distinct clinical patterns. Clin Infect Dis. 1998;27:504–8.

    Article  CAS  PubMed  Google Scholar 

  73. Quereda C, Corral I, Laguna F, Valencia ME, Tenorio A, Echeverría JM, et al. Diagnostic utility of a multiplex herpesvirus PCR assay performed with cerebrospinal fluid from human immunodeficiency virus-infected patients with neurological disorders. J Clin Microbiol. 2000;38:3061–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Anduze-Faris BM, Fillet AM, Gozlan J, Lancar R, Boukli N, Gasnault J, et al. Induction and maintenance therapy of cytomegalovirus central nervous system infection in HIV-infected patients. AIDS. 2000;14:517–24.

    Article  CAS  PubMed  Google Scholar 

  75. Tan SV, Guiloff RJ, Scaravilli F, Klapper PE, Cleator GM, Gazzard BG. Herpes simplex type 1 encephalitis in acquired immunodeficiency syndrome. Ann Neurol. 1993;34:619–22.

    Article  CAS  PubMed  Google Scholar 

  76. Cinque P, Vago L, Marenzi R, Guidici T, Weber R, Corradini D, et al. Herpes simplex virus infections of the central nervous system in human immunodeficiency virus-infected patients: clinical management by polymerase chain reaction assay of cerebrospinal fluid. Clin Infect Dis. 1998;27:303–9.

    Article  CAS  PubMed  Google Scholar 

  77. Corral I, Quereda C, Antela A, Pintado V, Casado JL, Martín-Dávila P, et al. Neurological complications of varicella-zoster virus in human immunodeficiency virus-infected patients: changes in prevalence and diagnostic utility of polymerase chain reaction in cerebrospinal fluid. J Neurovirol. 2003;9:129–35.

    Article  CAS  PubMed  Google Scholar 

  78. Gilden D, Cohrs RJ, Mahalingam R, Nagel MA. Varicella zoster virus vasculopathies: diverse clinical manifestations, laboratory features, pathogenesis, and treatment. Lancet Neurol. 2009;8:731–40.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sico JJ, Chang CC, So-Armah K, Justice AC, Hylek E, Skanderson M, et al. HIV status and the risk of ischemic stroke among men. Neurology. 2015;84:1933–40.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ortiz G, Koch S, Gomano JG, Forteza AM, Rabinstein AA. Mechanisms of stroke in HIV-infected patients. Neurology. 2007;68:1257–61.

    Article  CAS  PubMed  Google Scholar 

  81. Corral I, Quereda C, Moreno A, Pérez-Elías MJ, Dronda F, Casado JL, et al. Cerebrovascular ischemic events in HIV-1-infected patients receiving highly active antiretroviral therapy: incidence and risk factors. Cerebrovasc Dis. 2009;27:559–63.

    Article  PubMed  Google Scholar 

  82. Tipping B, de Villiers L, Wainwright H, Candy S, Bryer A. Stroke in patients with human immunodeficiency virus infection. J Neurol Neurosurg Psychiatry. 2007;78:1320–4.

    Article  PubMed  PubMed Central  Google Scholar 

  83. The Writing Committee of the D:A:D: Study Group. Cardio- and cerebrovascular events in HIV-infected persons. AIDS. 2004;18:1811–7.

    Article  Google Scholar 

  84. Ovbiagele B, Nath A. Increasing incidence of ischemic stroke in patients with HIV infection. Neurology. 2011;76:444–50.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Domingo P, Suarez-Lozano I, Torres F, Pomar V, Ribera E, Galindo MJ, et al. Bacterial meningitis in HIV-1-infected patients in the era of highly active antiretroviral therapy. J Acquir Immune Defic Syndr. 2009;51:582–7.

    Article  PubMed  Google Scholar 

  86. Casado JL, Quereda C, Oliva J, Navas E, Moreno A, Pintado V, et al. Candidal meningitis in HIV-infected patients: analysis of 14 cases. Clin Infect Dis. 1997;25:673–6.

    Article  CAS  PubMed  Google Scholar 

  87. Berenguer J, Moreno S, Laguna F, Vicente T, Adrados M, Ortega A, et al. Tuberculous meningitis in patients infected with the human immunodeficiency virus. N Engl J Med. 1992;326:668–72.

    Article  CAS  PubMed  Google Scholar 

  88. Corral I, Quereda C, Navas E, Martín-Dávila P, Pérez-Elías MJ, Casado JL, et al. Adenosine deaminase activity in cerebrospinal fluid of HIV-infected patients: limited value for diagnosis of tuberculous meningitis. Eur J Clin Microbiol Infect Dis. 2004;23:471–6.

    Google Scholar 

  89. Veltman JA, Bristow CC, Klausner JD. Meningitis in HIV-positive patients in sub-Saharan Africa: a review. J Int AIDS Soc. 2014;17:19184.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Del Pan GL, Glass JD, McArthur JC. Clinicopathologic correlations of HIV-1 associated vacuolar myelopathy. An autopsy-based case control study. Neurology. 1994;44:2159–64.

    Article  Google Scholar 

  91. Beilke MA, Japa S, Moeller-Hadi C, Martin-Schild S. Tropical spastic paraparesis/human T leukemia virus type 1-associated myelopathy in HIV type 1-coinfected patients. Clin Infect Dis. 2005;41:57–63.

    Article  Google Scholar 

  92. Gilden DH, Beinlich BR, Rubinstein EM, Stommel E, Swenson R, Rubinstein D, et al. Varicella-zoster virus myelitis: an expanding spectrum. Neurology. 1994;44:1818–23.

    Article  CAS  PubMed  Google Scholar 

  93. Escobar-Villalba A, Sainz de la Maza S, Pérez-Torre P, Galán JC, Rodríguez-Domínguez M, Monreal-Laguillo E, et al. Acute myelitis by human herpes virus 7 in an HIV-infected patient. J Clin Virol. 2016;77:63–5.

    Article  PubMed  Google Scholar 

  94. Schiffito G, McDermott M, McArthur J. Incidence and risk factors for HIV-associated distal sensory polyneuropathy. Neurology. 2002;58:1764–8.

    Article  Google Scholar 

  95. Evans SR, Ellis RJ, Chen H, Yeh T, Lee AJ, Schifitto G, et al. Peripheral neuropathy in HIV: prevalence and risk factors. AIDS. 2011;25:919–28.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lee AJ, Bosch RJ, Evans SR, Wu K, Harrison T, Grant P, et al. Patterns of peripheral neuropathy in ART-naïve patients initiating modern ART regimen. J Neurovirol. 2016;21:210–8.

    Article  CAS  Google Scholar 

  97. Centne CM, Bateman KJ, Heckmann JM. Manifestations of HIV infection in the peripheral nervous system. Lancet Neurol. 2013;12:295–309.

    Article  Google Scholar 

  98. Cornblath DR, McArthur JC, Kennedy PGE, Witte AS, Griffin JW. Inflammatory demyelinating peripheral neuropathies associated with human T-cell lymphotropic virus type III infection. Ann Neurol. 1987;21:32–40.

    Article  CAS  PubMed  Google Scholar 

  99. So YT, Olney RK. Acute lumbosacral polyradiculopathy in acquired immunodeficiency syndrome: experience in 23 patients. Ann Neurol. 1994;35:53–8.

    Article  CAS  PubMed  Google Scholar 

  100. Corral I, Quereda C, Casado JL, Cobo J, Navas E, Pérez-Elías MJ, et al. Acute polyradiculopathies in HIV-infected patients. J Neurol. 1997;244:499–504.

    Article  CAS  PubMed  Google Scholar 

  101. Roullet E, Assuerus V, Gozlan J, Ropert A, Saïd G, Baudrimont M, et al. Cytomegalovirus multifocal neuropathy in AIDS: analysis of 15 consecutive cases. Neurology. 1994;44:2174–82.

    Article  CAS  PubMed  Google Scholar 

  102. Simpson DM, Bender ANHIV. Associated myopathy: analysis of 11 patients. Ann Neurol. 1988;24:79–84.

    Article  CAS  PubMed  Google Scholar 

  103. Mhiri C, Baudrimont M, Bonne G, Geny C, Degoul F, Marsac C, et al. Zidovudine myopathy: a distinctive disorder associated with mitochondrial dysfunction. Ann Neurol. 1991;29:606–14.

    Article  CAS  PubMed  Google Scholar 

  104. Zetola NM, Klausner JD. Syphilis and HIV infection: an update. Clin Infect Dis. 2007;44:1222–8.

    Article  PubMed  Google Scholar 

  105. Johnson TP, Nath A. New insights into immune reconstitution inflammatory syndrome of the central nervous system. Curr Opin HIV AIDS. 2014;9:572–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Pepper DJ, Marais S, Maartens G, Rebe K, Morroni C, Rangaka MX, et al. Neurologic manifestations of paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome: a case series. Clin Infect Dis. 2009;48:e96–107.

    Article  PubMed  Google Scholar 

  107. Bicanic T, Meintjes G, Rebe K, Williams A, Loyse A, Wood R, et al. Immune reconstitution inflammatory syndrome in HIV-associated cryptococcal meningitis: a prospective study. J Acquir Immune Defic Syndr. 2009;51:130–4.

    Article  CAS  PubMed  Google Scholar 

  108. Bisson GP, Molefi M, Bellamy S, Thakur R, Steenhoff A, Tamuhla N, et al. Early versus delayed antiretroviral therapy and cerebrospinal fluid fungal clearance in adults with HIV and cryptococcal meningitis. Clin Infect Dis. 2013;56:1165–73.

    Article  CAS  PubMed  Google Scholar 

  109. Sainz-de-la-Maza S, Casado JL, Pérez-Elías MJ, Moreno A, Quereda C, Moreno S, et al. Incidence and prognosis of immune reconstitution inflammatory syndrome in HIV-associated progressive multifocal leukoencephalopathy. Eur J Neurol. 2016;23:919–25.

    Article  CAS  PubMed  Google Scholar 

  110. Domingo P, Torres OH, Ris J, Vázquez G. Herpes zoster as an immune reconstitution disease after initiation of combination antiretroviral therapy in patients with human immunodeficiency virus type-1 infection. Am J Med. 2001;110:605–9.

    Article  CAS  PubMed  Google Scholar 

  111. Kranick SM, Goncalvez PH, Stetler-Stevenson M, Aleman K, Polizzotto MN, Little RF, et al. Paradoxical central nervous system immune reconstitution syndrome in acquiered immunodeficiency syndrome-related primary central nervous system lymphoma. Haemathologica. 2015;100:e21–4.

    Article  Google Scholar 

  112. González-Valcárcel J, Corral I, Quereda C, Alonso-Cánovas A, Aparicio Hernandez M, de Felipe Mimbrera A, et al. Primary cerebral lymphomatoid granulomatosis as an immune reconstitution inflammatory syndrome in AIDS. J Neurol. 2010;257:2106–8.

    Article  PubMed  Google Scholar 

  113. Lescure FX, Moulignier A, Savatovsky J, Amiel C, Carcelain G, Molina JM, et al. CD8 encephalitis in HIV-infected patients receiving HAART: a treatable entity. Clin Infect Dis. 2013;57:101–8.

    Article  CAS  PubMed  Google Scholar 

  114. Gray F, Lescure FX, Adle-Biassette H, Polivka M, Gallien S, Pialoux G, et al. Encephalitis with infiltration by CD8+ lymphocytes in HIV patients receiving combination antiretroviral treatment. Brain Pathol. 2013;23:525–33.

    Article  PubMed  Google Scholar 

  115. Langford TD, Letendre SL, Marcote TD, Ellis RJ, McCutchan JA, Grant I, et al. Severe, demyelinating leukoencephalopathy in AIDS patients on antiretroviral therapy. AIDS. 2002;16:1019–29.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Newsome SD, Johnson E, Pardo C, McArthur JC, Nath A. Fulminant encephalopathy with basal ganglia hyperintensities in HIV-infected drug users. Neurology. 2011;76:787–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Simpson D, Estanislao L, Evans S, McArthur J, Markus K, Truffa M, et al. HIV-associated neuromuscular weakness syndrome. AIDS. 2004;18:1403–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iñigo Corral M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Corral, I., Quereda, C. (2018). The Neurological Spectrum of HIV Infection. In: García-Moncó, J. (eds) CNS Infections. Springer, Cham. https://doi.org/10.1007/978-3-319-70296-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70296-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70295-7

  • Online ISBN: 978-3-319-70296-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics