Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 60))

  • 2292 Accesses

Abstract

In numerous industries, particle-laden fluids are a key part of the fabrication of products such as (1) casted machine parts, (2) additively manufactured and 3D printed electronics and medical devices, and even (3) slurry processed food to name a few.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also, printed electronics, using processes such as high-resolution electrohydrodynamic jet printing, are also emerging as viable methods. For overviews, see Wei and Dong [8], who also develop specialized processes employing phase-change inks. Such processes are capable of producing micron-level footprints for high-resolution additive manufacturing.

  2. 2.

    Over 50% of man-made materials start in granulated form (Duran [9] and Torquato [10]).

  3. 3.

    Even techniques associated with shot peening can leave residual particulate matter. We also refer the reader to Afazov et al. [67], Bagherifard et al. [68], Elbella et al. [69], and Chen et al. [70]).

  4. 4.

    Even if this wavelength to particle size ratio is not present, ray representation of p-waves is still often used and can be considered as a way to approximately track the propagation of energy, however, without the ability to capture diffraction properly.

  5. 5.

    See Torquato [10] and Torquato and coworkers (see, e.g., Kansaal et al. [72] and Donev et al. [73,74,75,76,77]) for a detailed review of particle packing algorithms.

References

  1. Choi, S., Park, I., Hao, Z., Holman, H.Y., Pisano, A.P., Zohdi, T.I.: Ultra-fast self-assembly of micro-scale particles by open channel flow. Langmuir 26(7), 4661–4667 (2010)

    Article  Google Scholar 

  2. Choi, S., Stassi, S., Pisano, A.P., Zohdi, T.I.: Coffee-ring effect-based three dimensional patterning of micro, nanoparticle assembly with a single droplet. Langmuir 26(14), 11690–11698 (2010)

    Article  Google Scholar 

  3. Choi, S., Jamshidi, A., Seok, T.J., Zohdi, T.I., Wu., M.C., Pisano, A.P.: Fast, High-throughput creation of size-tunable micro, nanoparticle clusters via evaporative self-assembly in picoliter-scale droplets of particle suspension. Langmuir 28(6), 3102–3111 (2012)

    Google Scholar 

  4. Demko, M., Choi, S., Zohdi, T.I., Pisano, A.P.: High resolution patterning of nanoparticles by evaporative self-assembly enabled by in-situ creation and mechanical lift-off of a polymer template. Appl. Phys. Lett. 99, 253102-1–253102-3 (2012)

    Google Scholar 

  5. Demko, M.T., Cheng, J.C., Pisano, A.P.: High-resolution direct patterning of gold nanoparticles by the microfluidic molding process. Langmuir 412–417 (2010)

    Google Scholar 

  6. Martin, P.: Handbook of Deposition Technologies for Films and Coatings, 3rd edn. Elsevier (2009)

    Google Scholar 

  7. Martin, P.: Introduction to Surface Engineering and Functionally Engineered Materials. Scrivener and Elsevier (2011)

    Google Scholar 

  8. Wei, C., Dong, J.: Development and modeling of melt electrohydrodynamic-jet printing of phase-change inks for high-resolution additive manufacturing. J. Manuf. Sci. Eng. 136, 061010 (2014). Paper no: MANU-14-1179. https://doi.org/10.1115/1.4028483

  9. Duran, J.: Sands, Powders and Grains: An Introduction to the Physics of Granular Matter. Springer (1997)

    Google Scholar 

  10. Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, New York (2002)

    Book  MATH  Google Scholar 

  11. Onate, E., Idelsohn, S.R., Celigueta, M.A., Rossi, R.: Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput. Methods Appl. Mech. Eng. 197(19–20), 1777–1800 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Onate, E., Celigueta, M.A., Idelsohn, S.R., Salazar, F., Surez, B.: Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Comput. Mech. 48, 307–318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Rojek, J., Labra, C., Su, O., Onate, E.: Comparative study of different discrete element models and evaluation of equivalent micromechanical parameters. Int. J. Solids Struct. 49, 1497–1517 (2012). https://doi.org/10.1016/j.ijsolstr.2012.02.032

  14. Carbonell, J.M., Onate, E., Suarez, B.: Modeling of ground excavation with the particle finite element method. J. Eng. Mech. ASCE 136, 455–463 (2010)

    Article  Google Scholar 

  15. Labra, C., Onate, E.: High-density sphere packing for discrete element method simulations. Commun. Numer. Methods Eng. 25(7), 837–849 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leonardi, A., Wittel, F.K., Mendoza, M., Herrmann, H.J.: Coupled DEM-LBM method for the free-surface simulation of heterogeneous suspensions. Comput. Part. Mech. 1(1), 3–13 (2014)

    Article  Google Scholar 

  17. Cante, J., Davalos, C., Hernandez, J.A., Oliver, J., Jonsen, P., Gustafsson, G., Haggblad, H.A.: PFEM-based modeling of industrial granular flows. Comput. Part. Mech. 1(1), 47–70 (2014)

    Article  Google Scholar 

  18. Rojek, J.: Discrete element thermomechanical modelling of rock cutting with valuation of tool wear. Comput. Part. Mech. 1(1), 71–84 (2014)

    Article  Google Scholar 

  19. Onate, E., Celigueta, M.A., Latorre, S., Casas, G., Rossi, R., Rojek, J.: Lagrangian analysis of multiscale particulate flows with the particle finite element method. Comput. Part. Mech. 1(1), 85–102 (2014)

    Article  Google Scholar 

  20. Bolintineanu, D.S., Grest, G.S., Lechman, J.B., Pierce, F., Plimpton, S.J., Schunk, P.R.: Particle dynamics modeling methods for colloid suspensions. Comput. Part. Mech. 1(3), 321–356 (2014)

    Article  Google Scholar 

  21. Avci, B., Wriggers, P.: A DEM-FEM coupling approach for the direct numerical simulation of 3D particulate flows. J. Appl. Mech. 79(1–7), 010901 (2012)

    Article  Google Scholar 

  22. Zohdi, T.I.: Staggering error control for a class of inelastic processes in random microheterogeneous solids. Int. J. Nonlinear Mech. 39, 281–297 (2004)

    Article  MATH  Google Scholar 

  23. Zohdi, T.I.: Modeling and simulation of a class of coupled thermo-chemo-mechanical processes in multiphase solids. Comput. Methods Appl. Mech. Eng. 193(6–8), 679–699 (2004)

    Article  MATH  Google Scholar 

  24. Zohdi, T.I.: Modeling and direct simulation of near-field granular flows. Int. J. Solids Struct. 42(2), 539–564 (2004)

    Article  MATH  Google Scholar 

  25. Zohdi, T.I.: Charge-induced clustering in multifield particulate flow Int. J. Numer. Methods Eng. 62(7), 870–898 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zohdi, T.I.: On the optical thickness of disordered particulate media. Mech. Mater. 38, 969–981 (2006)

    Article  Google Scholar 

  27. Zohdi, T.I., Kuypers, F.A.: Modeling and rapid simulation of multiple red blood cell light scattering. Proc. R. Soc. Interface 3(11), 823–831 (2006)

    Article  Google Scholar 

  28. Zohdi, T.I.: Computation of the coupled thermo-optical scattering properties of random particulate systems. Comput. Methods Appl. Mech. Eng. 195, 5813–5830 (2006)

    Article  MATH  Google Scholar 

  29. Zohdi, T.I.: Computation of strongly coupled multifield interaction in particle-fluid systems. Comput. Methods Appl. Mech. Eng. 196, 3927–3950 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zohdi, T.I.: On the computation of the coupled thermo-electromagnetic response of continua with particulate microstructure. Int. J. Numer. Methods Eng. 76, 1250–1279 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zohdi, T.I.: Mechanistic modeling of swarms. Comput. Methods Appl. Mech. Eng. 198(21–26), 2039–2051 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zohdi, T.I.: On the dynamics of charged electromagnetic particulate jets. Arch. Comput. Methods Eng. 17(2), 109–135 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zohdi, T.I., Kuypers, F.A., Lee, W.C.: Estimation of red blood cell volume fraction from overall permittivity measurement. Int. J. Eng. Sci. 48, 1681–1691 (2010)

    Article  MATH  Google Scholar 

  34. Zohdi, T.I.: Simulation of coupled microscale multiphysical-fields in particulate-doped dielectrics with staggered adaptive FDTD. Comput. Methods Appl. Mech. Eng. 199, 79–101 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zohdi, T.I.: Dynamics of clusters of charged particulates in electromagnetic fields. Int. J. Numer. Methods Eng. 85, 1140–1159 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zohdi, T.I.: Modeling and simulation of the optical response rod-functionalized reflective surfaces. Comput. Mech. 50(2), 257–268 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zohdi, T.I.: Numerical simulation of charged particulate cluster-droplet impact on electrified surfaces. J. Comput. Phys. 233, 509–526 (2013)

    Article  MathSciNet  Google Scholar 

  38. Zohdi, T.I.: On inducing compressive residual stress in microscale print-lines for flexible electronics. Int. J. Eng. Sci. 62, 157–164 (2013)

    Article  Google Scholar 

  39. Zohdi, T.I.: Rapid simulation of laser processing of discrete particulate materials. Arch. Comput. Methods Eng. 20, 309–325 (2013)

    Article  Google Scholar 

  40. Zohdi, T.I.: A direct particle-based computational framework for electrically-enhanced thermo-mechanical sintering of powdered materials. Math. Mech. Solids 19(1), 93–113 (2014)

    Article  Google Scholar 

  41. Zohdi, T.I.: Additive particle deposition and selective laser processing-a computational manufacturing framework. Comput. Mech. 54, 171–191 (2014)

    Article  MATH  Google Scholar 

  42. Zohdi, T.I.: Embedded electromagnetically sensitive particle motion in functionalized fluids. Comput. Part. Mech. 1, 27–45 (2014)

    Article  Google Scholar 

  43. Zohdi, T.I.: A computational modelling framework for high-frequency particulate obscurant cloud performance. Int. J. Eng. Sci. 89, 75–85 (2015)

    Article  Google Scholar 

  44. Zohdi, T.I.: Modeling and simulation of cooling-induced residual stresses in heated particulate mixture depositions. Comput. Mech. 56, 613–630 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zohdi, T.I.: Modeling and efficient simulation of the deposition of particulate flows onto compliant substrates. Int. J. Eng. Sci. 99, 74–91 (2015). https://doi.org/10.1016/j.ijengsci.2015.10.012

  46. Zohdi, T.I.: Modeling and simulation of laser processing of particulate-functionalized materials. Arch. Comput. Methods Eng. 1–25 (2015). https://doi.org/10.1007/s11831-015-9160-1

  47. Zohdi, T.I.: A discrete element and ray framework for rapid simulation of acoustical dispersion of microscale particulate agglomerations. Comp. Mech. https://doi.org/10.1007/s0046-015-1256-2

  48. Zohdi, T.I., Wriggers, P.: Introduction to Computational Micromechanics. Springer, Second Reprinting (Peer Reviewed) (2005)

    Book  MATH  Google Scholar 

  49. Markov, K.Z.: Elementary micromechanics of heterogeneous media. In: Markov, K.Z., Preziozi, L. (eds.) Heterogeneous Media: Micromechanics Modeling Methods and Simulations, pp. 1–162. Birkhauser, Boston (2000)

    Chapter  Google Scholar 

  50. Virovlyanskii, A.L.: Interrelation between ray and mode field representations in an acoustic waveguide. Radiophys. Quant. Electron. 38, 76 (1995)

    Article  Google Scholar 

  51. Borejko, P., Chen, C.F., Pao, Y.H.: Application of the method of generalized rays to acoustic waves in a liquid wedge over elastic bottom. J. Comput. Acoust. 9, 41–68 (2011)

    Article  Google Scholar 

  52. Aurich, J.C., Dornfeld, D.A.: Burrs—analysis, control and removal. In: Jan Aurich, C., David, A. (eds.) Proceedings of the CIRP International. Springer, Dornfeld (2010)

    Google Scholar 

  53. Garg, S., Dornfeld, D., Berger, K.: Formulation of the chip cleanability mechanics from fluid transport. In: Aurich, J.C., Dornfeld, D.A. (eds.) Burrs Analysis, Control and Removal, pp. 229–236. Springer, Germany (2010)

    Chapter  Google Scholar 

  54. Avila, M., Gardner, J., Reich-Weiser, C., Tripathi, S., Vijayaraghavan, A., Dornfeld, D.A.: Strategies for Burr minimization and cleanability in aerospace and automotive manufacturing. SAE Tech. (2005). Paper 2005-01-3327. https://doi.org/10.4271/2005-01-3327

  55. Avila, M. Reich-Weiser, C., Dornfeld, D.A., McMains, S.: Design and manufacturing for cleanability in high performance cutting. In: CIRP 2nd International Conference on High Performance Cutting, Vancouver, BC, June 2006, Paper number 63 (2006)

    Google Scholar 

  56. Luo, L., Dornfeld, D.A.: Material removal mechanism in chemical mechanical polishing: theory and modeling. IEEE Trans. Semicond. Manuf. 14(2), 112–133 (2001)

    Article  Google Scholar 

  57. Luo, L., Dornfeld, D.A.: Effects of abrasive size distribution in chemical-mechanical planarization: modeling and verification. IEEE Trans. Semicond. Manuf. 16, 469–476 (2003)

    Article  Google Scholar 

  58. Luo, L., Dornfeld, D.A.: Material removal regions in chemical mechanical planarization for sub-micron integration for sub-micron integrated circuit fabrication: coupling effects of slurry chemicals, abrasive size distribution, and wafer-pad contact area. IEEE Trans. Semicond. Manuf. 16, 45–56 (2003)

    Article  Google Scholar 

  59. Luo, L., Dornfeld, D.A.: Integrated Modeling of Chemical Mechanical Planarization of Sub-micron IC Fabrication. Springer (2004)

    Google Scholar 

  60. Arbelaez, D., Zohdi, T.I., Dornfeld, D.: Modeling and simulation of material removal with particulate flow. Comput. Mech. 42, 749–759 (2008)

    Article  MATH  Google Scholar 

  61. Arbelaez, D., Zohdi, T.I., Dornfeld, D.: On impinging near-field granular jets. Int. J. Numer. Methods Eng. 80(6), 815–845 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  62. Campello, E.M.B., Zohdi, T.I.: A computational framework for simulation of the delivery of substances into cells. Int. J. Numer. Methods Biomed. Eng. 30(11), 1132–1152 (2014)

    Article  MathSciNet  Google Scholar 

  63. Campello, E.M.B., Zohdi, T.I.: Design evaluation of a particle bombardment system to deliver substances into cells. Comput. Mech. Eng. Sci. 98(2), 221–245 (2014)

    MathSciNet  MATH  Google Scholar 

  64. Gomes-Ferreira, C., Ciampini, D., Papini, M.: The effect of inter-particle collisions in erosive streams on the distribution of energy flux incident to a flat surface. Tribol. Int. 37, 791–807 (2004)

    Article  Google Scholar 

  65. Ghobeity, A., Spelt, J.K., Papini, M.: Abrasive jet micro-machining of planar areas and transitional slopes. J. Micromech. Microeng. 18, 055014 (2008)

    Article  Google Scholar 

  66. Ghobeity, A., Krajac, T., Burzynski, T., Papini, M., Spelt, J.K.: Surface evolution models in abrasive jet micromachining. Wear 264, 185–198 (2008)

    Article  Google Scholar 

  67. Afazov, S.M., Becker, A.A., Hyde, T.H.: Mathematical modeling and implementation of residual stress mapping from microscale to macroscale finite element models. J. Manuf. Sci. Eng. 134(2), 021001-021001-11 (2012)

    Google Scholar 

  68. Bagherifard, S., Giglio, M., Giudici, L., Guagliano, M.: Experimental and numerical analysis of fatigue properties improvement in a titanium alloy by shot peening. In: Proceedings of the ASME. 49163; ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, vol. 2, pp. 317–322 (2010)

    Google Scholar 

  69. Elbella, A., Fadul, F., Uddanda, S.H., Kasarla, N.R.: Influence of shot peening parameters on process effectiveness. In: Proceedings of the ASME. 45196; Volume 3: Design, Materials and Manufacturing, Parts A, B, and C: 2015–2021 (2012)

    Google Scholar 

  70. Chen, Z., Yang, F., Meguid, S.A.: Realistic finite element simulations of arc-height development in shot-peened Almen strips. J. Eng. Mater. Technol. 136(4), 041002-041002-7 (2014)

    Google Scholar 

  71. Widom, B.: Random sequential addition of hard spheres to a volume. J. Chem. Phys. 44, 3888–3894 (1966)

    Article  Google Scholar 

  72. Kansaal, A., Torquato, S., Stillinger, F.: Diversity of order and densities in jammed hard-particle packings. Phys. Rev. E. 66, 041109 (2002)

    Article  Google Scholar 

  73. Donev, A., Cisse, I., Sachs, D., Variano, E.A., Stillinger, F., Connelly, R., Torquato, S., Chaikin, P.: Improving the density of jammed disordered packings using ellipsoids. Science 13(303), 990–993 (2004)

    Article  Google Scholar 

  74. Donev, A., Stillinger, F.H., Chaikin, P.M., Torquato, S.: Unusually dense crystal ellipsoid packings. Phys. Rev. Lett. 92, 255506 (2004)

    Article  Google Scholar 

  75. Donev, A., Torquato, S., Stillinger, F.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-I: Algorithmic details. J. Comput. Phys. 202, 737 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  76. Donev, A., Torquato, S., Stillinger, F.: Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles-II: Application to ellipses and ellipsoids. J. Comput. Phys. 202, 765 (2005)

    MathSciNet  MATH  Google Scholar 

  77. Donev, A., Torquato, S., Stillinger, F.H.: Pair correlation function characteristics of nearly jammed disordered and ordered hard-sphere packings. Phys. Rev. E 71, 011105 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek I. Zohdi .

11.6   Chapter Appendix: Basics of Acoustics

11.6   Chapter Appendix: Basics of Acoustics

In our approach, we model the individual particles as being rigid, and the material surrounding the particles as being isotropic and having a relatively low shear modulus, in the zero limit becoming an acoustical medium. Generally, for an isotropic material, one has the classical relationship between the components of infinitesimal strain (\({\varvec{\epsilon }}\)) to the Cauchy stress (\({\varvec{\sigma }}\))

$$\begin{aligned} {\varvec{\sigma }}=\displaystyle {{{\varvec{I}}}\!{{\varvec{E}}}:{\varvec{\epsilon }}=3\kappa \frac{\mathrm{tr} {\varvec{\epsilon }}}{3}{} \mathbf{1}+2\mu {\varvec{\epsilon }}^{\prime }}, \end{aligned}$$
(11.14)

where \({{\varvec{I}}}\!{{\varvec{E}}}\) is the elasticity tensor and where \({\varvec{\epsilon }}^{\prime }\) is the strain deviator. The corresponding strain energy density is

$$\begin{aligned} \displaystyle {W=\frac{1}{2}{\varvec{\epsilon }}:{{{\varvec{I}}}\!{{\varvec{E}}}}:{\varvec{\epsilon }}= \frac{1}{2}\left( 9\kappa (\frac{\mathrm{tr} {\varvec{\epsilon }}}{3})^2+2\mu {\varvec{\epsilon }}^{\prime }:{\varvec{\epsilon }}^{\prime }\right) }. \end{aligned}$$
(11.15)

We focus on the dilatational deformation in the low shear modulus matrix surrounding the particles. This naturally leads to an idealized “acoustical” material approximation, \(\mu \approx 0\). Hence, Eq. 11.14 collapses to \({\varvec{\sigma }}=-p \mathbf{1}\), where the pressure is \(p=-3\, \kappa \,\frac{\mathrm{tr} {{\varvec{\epsilon }}}}{3} \mathbf{1}\) and with a corresponding strain energy of \(\displaystyle {W=\frac{1}{2}\frac{p^2}{\kappa }}\). By inserting the simplified expression of the stress \({\varvec{\sigma }}=-p\mathbf{1}\) into the equation of equilibrium, we obtain

$$\begin{aligned} \nabla \cdot {\varvec{\sigma }}=-\nabla p=\rho \ddot{{\varvec{u}}}, \end{aligned}$$
(11.16)

where \({\varvec{u}}\) is the displacement. By taking the divergence of both sides, and recognizing that \(\nabla \cdot {\varvec{u}}=-\frac{p}{\kappa }\), we obtain

$$\begin{aligned} \nabla ^2 p=\frac{\rho }{\kappa }\ddot{p}=\frac{1}{c^2}\ddot{p}. \end{aligned}$$
(11.17)

If we assume a harmonic solution, we obtain

$$\begin{aligned} p=Pe^{j({\varvec{k}}\cdot {\varvec{r}}-\omega t)} \Rightarrow \dot{p}=Pj\omega e^{j({\varvec{k}}\cdot {\varvec{r}}-\omega t)} \Rightarrow \ddot{p}=-P\omega ^2 e^{j({\varvec{k}}\cdot {\varvec{r}}-\omega t)}, \end{aligned}$$
(11.18)

and

$$\begin{aligned} \nabla p= & {} Pj(k_x{\varvec{e}}_x+k_y{\varvec{e}}_y+k_z{\varvec{e}}_z)e^{j({\varvec{k}}\cdot {\varvec{r}}-\omega t)} \Rightarrow \nabla \cdot \nabla p= \nabla ^2 p\nonumber \\ {}= & {} -P\underbrace{(k^2_x+k^2_y+k^2_z)}_{||{\varvec{k}}||^2} e^{j({\varvec{k}}\cdot {\varvec{r}}-\omega t)}. \end{aligned}$$
(11.19)

We insert these relations into Eq. 11.17 and obtain an expression for the magnitude of the wave number vector

$$\begin{aligned} -P||{\varvec{k}}||^2e^{j({\varvec{k}}\cdot {\varvec{r}}-\omega t)}=-\frac{\rho }{\kappa } P\omega ^2e^{j({\varvec{k}}\cdot {\varvec{r}}-\omega t)} \Rightarrow ||{\varvec{k}}||=\frac{\omega }{c}. \end{aligned}$$
(11.20)

Equation 11.16 (balance of linear momentum) implies

$$\begin{aligned} \rho \ddot{{\varvec{u}}}=-\nabla p=-Pj(k_x{\varvec{e}}_x+k_y{\varvec{e}}_y+k_z{\varvec{e}}_z)e^{j({\varvec{k}}\cdot {\varvec{r}}-\omega t)}. \end{aligned}$$
(11.21)

Now we integrate once, which is equivalent to dividing by \(-j\omega \), and obtain the velocity

$$\begin{aligned} \dot{{\varvec{u}}}=\frac{Pj}{\rho \omega }(k_x{\varvec{e}}_x+k_y{\varvec{e}}_y+k_z{\varvec{e}}_z)e^{j({\varvec{k}}\cdot {\varvec{r}}-\omega t)}, \end{aligned}$$
(11.22)

and do so again for the displacement

$$\begin{aligned} {\varvec{u}}=\frac{Pj}{\rho \omega ^2}(k_x{\varvec{e}}_x+k_y{\varvec{e}}_y+k_z{\varvec{e}}_z)e^{j({\varvec{k}}\cdot {\varvec{r}}-\omega t)}. \end{aligned}$$
(11.23)

Thus, we have

$$\begin{aligned} ||\dot{{\varvec{u}}}||=\frac{P}{c\rho }. \end{aligned}$$
(11.24)

The reflection of a plane harmonic pressure wave at an interface is given by enforcing continuity of the (acoustical) pressure and disturbance velocity at that location; this yields the ratio between the incident and reflected pressures. We use a local coordinate system (Fig. 11.3) and require that the number of waves per unit length in the \(x-\mathrm{direction}\) must be the same for the incident, reflected, and refracted (transmitted) waves,

$$\begin{aligned} {\varvec{k}}_i\cdot {\varvec{e}}_x={\varvec{k}}_r\cdot {\varvec{e}}_x= {\varvec{k}}_t\cdot {\varvec{e}}_x. \end{aligned}$$
(11.25)

From the pressure balance at the interface, we have

$$\begin{aligned} P_ie^{j({\varvec{k}}_i\cdot {\varvec{r}}-\omega t)}+ P_re^{j({\varvec{k}}_r\cdot {\varvec{r}}-\omega t)}= P_te^{j({\varvec{k}}_t\cdot {\varvec{r}}-\omega t)}, \end{aligned}$$
(11.26)

where \(P_i\) is the incident pressure ray, \(P_r\) is the reflected pressure ray, and \(P_t\) is the transmitted pressure ray. This forces a time-invariant relation to hold at all parts on the boundary, because the arguments of the exponential must be the same. This leads to (\(k_i=k_r\))

$$\begin{aligned} k_i sin \theta _i=k_r sin \theta _r\Rightarrow \theta _i=\theta _r, \end{aligned}$$
(11.27)

and

$$\begin{aligned} k_i sin \theta _i=k_t sin \theta _t\Rightarrow \frac{k_i}{k_t} =\frac{sin\theta _t}{sin \theta _i}=\frac{\omega /c_t}{\omega /c_i} =\frac{c_i}{c_t} =\frac{v_i}{v_t} =\frac{n_t}{n_i}. \end{aligned}$$
(11.28)

Equations 11.25 and 11.26 imply

$$\begin{aligned} P_ie^{j({\varvec{k}}_i \cdot {\varvec{r}})}+ P_re^{j({\varvec{k}}_r \cdot {\varvec{r}})}= P_te^{j({\varvec{k}}_t \cdot {\varvec{r}})}. \end{aligned}$$
(11.29)

The continuity of the displacement, and hence the velocity

$$\begin{aligned} {\varvec{v}}_i+{\varvec{v}}_r={\varvec{v}}_t, \end{aligned}$$
(11.30)

leads to, after use of Eq. 11.24,

$$\begin{aligned} -\frac{P_i}{\rho _ic_i}cos\theta _i+ \frac{P_r}{\rho _rc_r}cos\theta _r= -\frac{P_t}{\rho _tc_t}cos\theta _t. \end{aligned}$$
(11.31)

We solve for the ratio of the reflected and incident pressures to obtain

$$\begin{aligned} r=\frac{P_r}{P_i}= \frac{\hat{A}cos\theta _i-cos\theta _t}{\hat{A}cos\theta _i+cos\theta _t}, \end{aligned}$$
(11.32)

where \(\hat{A}{\mathop {=}\limits ^\mathrm{def}}\frac{A_t}{A_i}=\frac{\rho _tc_t}{\rho _ic_i}\), where \(\rho _t\) is the medium which the ray encounters (transmitted), \(c_t\) is corresponding sound speed in that medium, \(A_t\) is the corresponding acoustical impedance, \(\rho _i\) is the medium in which the ray was traveling (incident), \(c_i\) is corresponding sound speed in that medium \(A_i\) is the corresponding acoustical impedance. The relationship (the law of refraction) between the incident and transmitted angles is \(c_tsin\theta _t=c_isin\theta _i\). Thus, we may write the Fresnel relation

$$\begin{aligned} r=\frac{\tilde{c}\hat{A}cos\theta _i-(\tilde{c}^2-sin^2\theta _i)^{\frac{1}{2}}}{\tilde{c}\hat{A}cos\theta _i+(\tilde{c}^2-sin^2\theta _i)^{\frac{1}{2}}}, \end{aligned}$$
(11.33)

where \(\tilde{c}{\mathop {=}\limits ^\mathrm{def}}\frac{c_i}{c_t}\). The reflectance for the (acoustical) energy \(\mathcal{R}=r^2\) is

$$\begin{aligned} \mathcal{R}=\left( \frac{P_r}{P_i}\right) ^2= \left( \frac{\hat{A}cos\theta _i-cos\theta _t}{\hat{A}cos\theta _i+cos\theta _t}\right) ^2=\left( \frac{I_r}{I_i}\right) ^2. \end{aligned}$$
(11.34)

For the cases where \(sin \theta _t=\frac{sin \theta _i}{\tilde{c}}>1\), one may rewrite the reflection relation as

$$\begin{aligned} r= \frac{\tilde{c}\hat{A}cos\theta _i-j(sin^2\theta _i-\tilde{c}^2)^{\frac{1}{2}}}{\tilde{c}\hat{A}cos\theta _i+j(sin^2\theta _i-\tilde{c}^2)^{\frac{1}{2}}}. \end{aligned}$$
(11.35)

where \(j=\sqrt{-1}\). The reflectance is \(\mathcal{R} {\mathop {=}\limits ^\mathrm{def}}r \bar{r}=1\), where \(\bar{r}\) is the complex conjugate. Thus, for angles above the critical angle \(\theta _i \ge \theta ^*_i\), all of the energy is reflected. We note that when \(A_t=A_i\) and \(c_i=c_t\), then there is no reflection. Also, when \(A_t>>A_i\) or when \(A_t<<A_i\), then \(r\rightarrow 1\).

Remark

If one considers for a moment an incoming pressure wave (ray), which is incident on an interface between two general elastic media (\(\mu \ne 0\)), reflected shear waves must be generated in order to satisfy continuity of the traction, \([\!|{\varvec{\sigma }}\cdot {\varvec{n}}|\!]=\mathbf{0}\). This is due to the fact that

$$\begin{aligned}{}[\!|\left( 3\kappa \mathrm{tr} \frac{{\varvec{\epsilon }}}{3} \mathbf{1}+2\mu {\varvec{\epsilon }}^{\prime }\right) \cdot {\varvec{n}}|\!]=\mathbf{0}. \end{aligned}$$
(11.36)

For an idealized acoustical medium, \(\mu =0\), no shear waves need to be generated to satisfy Eq. 11.36.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zohdi, T.I. (2018). DEM Extensions: Acoustical Pre-Processing. In: Modeling and Simulation of Functionalized Materials for Additive Manufacturing and 3D Printing: Continuous and Discrete Media. Lecture Notes in Applied and Computational Mechanics, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-319-70079-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70079-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70077-9

  • Online ISBN: 978-3-319-70079-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics