Skip to main content

On the von Karman Length Scale as a Triggering Parameter in Eddy-Resolving Simulations of Turbulent Flows

  • Conference paper
  • First Online:
Progress in Hybrid RANS-LES Modelling (HRLM 2016)

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 137))

Included in the following conference series:

  • 2108 Accesses

Abstract

The von Karman length scale \( {\text{L}}_{\text{vK}} =\upkappa{\text{S}}/\left| {\nabla^{2} {\text{U}}} \right| \) represents a key element in triggering the flow to generate resolved turbulence in Scale-Adaptive Simulations (SAS) [8, 9, 12] analog to the role of grid spacing \( \Delta \left( { = \sqrt[3]{{\Delta _{\text{x}}\Delta _{\text{y}}\Delta _{\text{z}} }}} \right) \) in Large-Eddy Simulation (LES). Accordingly, the \( {\text{L}}_{\text{vK}} \) parameter mimics the length scale characterizing the resolved motion within the SAS framework. It represents a flow variable of decisive importance in additional source term providing selective enhancement of the dissipation rate production, mostly in the separated shear layer regions. The main objective of the present work is the visualization of the structural properties of the \( {\text{L}}_{\text{vK}} \) length scale in some internal and external flow configurations subjected to different straining originating from the boundary layer separation from sharp-edged and continuous curved surfaces. Furthermore, the present work attempts to establish a relationship between the \( {\text{L}}_{\text{vK}} \) length scale and grid resolution (in terms of grid spacing \( \Delta \)) in relation to the flow unsteadiness characterization, identifying the SAS method capabilities of capturing appropriately the fluctuating turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Basara, B., Krajnovic, S., Girimaji, S., Pavlovic, Z.: Near-wall formulation of the partially averaged Navier–Stokes (PANS) turbulence model. AIAA J. 49(12), 2627–2636 (2011)

    Article  Google Scholar 

  2. Breuer, M., Peller, N., Rapp, Ch., Manhart, M.: Flow over periodic hills - Numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38, 433–457 (2009)

    Article  MATH  Google Scholar 

  3. Chaouat, B., Schiestel, R.: A new partially integrated transport model (PITM) for subgrid-scale stresses and dissipation rate for turbulent developing flows. Phys. Fluids 17(065106): 1-19 (2005)

    MATH  Google Scholar 

  4. Cherry, E.M., Elkins, C.J., Eaton, J.K.: Geometric sensitivity of three-dimensional separated flows. Int. J. Heat Fluid Flow 29, 803–811 (2008)

    Article  Google Scholar 

  5. Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Girimaji, S.S.: Partially-averaged Navier-Stokes (PANS) model for turbulence: a Reynolds-averaged Navier-Stokes to Direct Numerical Simulation Bridging Method. J. Appl. Mech. 73, 413–421 (2006)

    Article  MATH  Google Scholar 

  7. Jakirlić, S., Hanjalić, K.: A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 439, 139–166 (2002)

    MATH  Google Scholar 

  8. Jakirlić, S., Maduta, R.: Extending the bounds of “steady” RANS closures: towards an instability-sensitive Reynolds stress model. Int. J. Heat Fluid Flow 51, 175–194 (2015)

    Article  Google Scholar 

  9. Jakirlić, S., Maduta, R.: Sensitized RANS modelling of turbulence: resolving turbulence unsteadiness by a (near-wall) Reynolds stress model. In: Stanislas, M., Jimenez, J., Marusic, I. (eds.) Progress in Wall Turbulence 2: Understanding and Modeling, ERCOFTAC Series, vol. 23, pp. 17–35. Springer, (2015). (ISBN 978-3-319-20387-4)

    Google Scholar 

  10. Larsen, P.S., Schmidt, J.J., U. Ullum, U.: Experimental study of temporal and spatial structures in fence-on-wall test case. In: IUTAM Symposium on Simulation and Identification of Organized Structures in Flows, in Fluid Mechanics and its Applications, vol. 52, pp. 25–37. Kluwer Academic Publisher (1999)

    Google Scholar 

  11. Lincke, A.: Verification and validation of von Karman length scale for identification of turbulent structures. DLR Report FB-Nr. 2009-23 (2009)

    Google Scholar 

  12. Menter, F., Egorov, Y.: The Scale-adaptive Simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. Flow, Turbulence and Combustion 85: 113-138 (2010)

    Article  MATH  Google Scholar 

  13. Menter, F.R., Egorov, Y.: Re-visiting the turbulent scale equation. In: Meier G.E.A., Sreenivasan K.R (eds.) Proceedings of the IUTAM Symp. One Hundred Years of Boundary Layer Research, pp. 279–290. Springer Publisher, Göttingen (2006). (ISBN-10 1-4020-4149-7)

    Google Scholar 

  14. Menter, F.R., Egorov, Y.: SAS turbulence modelling of technical flows. In: Lamballais E. et al. (eds.) Direct and Large Eddy Simulation (DLES) VI (Proceedings of the Sixth International ERCOFTAC Workshop on Direct and Large-Eddy Simulation, University of Poitiers, 12–14 Sept 2005), pp. 687–694. Springer Publisher (2006). (ISBN-10 1-4020-4909-9)

    Google Scholar 

  15. Menter, F.R, Kuntz, M., Bender R.: A scale-adaptive simulation model for turbulent flow predictions. AIAA Paper No. 2003-0767 (2003)

    Google Scholar 

  16. Neuhart, D.H., Jenkins, L.N., Choudhari, M.M., Khorrami, M.R.: Measurements of the Flowfield Interaction between Tandem Cylinders. AIAA Paper No. 2009-3275 (2009)

    Google Scholar 

  17. Ohlsson, J., Schlatter, P., Fischer P.F., Henningson, D.S.: DNS of separated flow in a three-dimensional diffuser by the spectral-element method. J. Fluid Mech. 650, 307–318 (2010)

    Article  MATH  Google Scholar 

  18. Schiestel, R., Dejoan, A.: Towards a new partially integrated transport model (PITM) for coarse grid and unsteady turbulent flow simulations. Theoret. Comput. Fluid Dyn. 18(6), 443–468 (2005)

    Article  MATH  Google Scholar 

  19. Spalart, P.R.: Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)

    Article  MATH  Google Scholar 

  20. Spalart, P.R., Jou, W.-H., Strelets, M., Allmaras, S.: Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. In: Liu, C., Liu, Z. (eds.) 1st AF OSR International Conference on DNS and LES Advances in DNS/LES, Columbus, OH, pp. 137–147. Greyden Press (1997)

    Google Scholar 

Download references

Acknowledgements

The work of R. Maduta has been funded by the EU Project ATAAC (ACP8-GA-2009-233710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jakirlic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maduta, R., Jakirlic, S. (2018). On the von Karman Length Scale as a Triggering Parameter in Eddy-Resolving Simulations of Turbulent Flows. In: Hoarau, Y., Peng, SH., Schwamborn, D., Revell, A. (eds) Progress in Hybrid RANS-LES Modelling. HRLM 2016. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 137. Springer, Cham. https://doi.org/10.1007/978-3-319-70031-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70031-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70030-4

  • Online ISBN: 978-3-319-70031-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics