Skip to main content

Remote Sensing for Planar Electrostatic Characterization Using the Multi-Sphere Method

  • Conference paper
  • First Online:
Stardust Final Conference

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 52))

Abstract

Applications like the Electrostatic Tractor (ET), remote sensing of space debris objects, or planetary science investigating asteroid charging, benefit from a touchless method to assess the electrostatic potential and charge distribution of another body. In the ET, accurate predictions of the force and torque between a passive space object and tug spacecraft are critical to ensure a robust closed loop control. This paper presents a novel, touchless method for determining both the voltage and a Multi-Sphere-Method (MSM) model which can be used to determine the charge distribution, force, and torque on a nearby space object. By means of potential probes, Remote Sensing for Electrostatic Characterization (RSEC) can be performed. Here the space tug shape and electrostatic potential is assumed to be known. The probes measure the departure from the expected potential field about the tug and determine an MSM model of the passive object’s potential distribution. This paper outlines a method for estimating the voltage and charge distribution of a neighboring charged spacecraft undergoing a planar rotation given measurements of voltage over a full rotation. Assuming knowledge of the tug spacecraft’s voltage and charge distribution, the rotation rate and distance to the debris, numerical simulation results illustrate that the constructed model of the debris can be characterized within a few percent error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albuja, A.A.: Rotational dynamics of inactive satellites as a result of the YORP effect. Ph.D. Thesis, University of Colorado Boulder (2015)

    Google Scholar 

  2. Ariafar, S., Jehn, R.: Long-term evolution of retired geostationary satellites. In: 4th European Conference on Space Debris, vol. 587, p. 681 (2005)

    Google Scholar 

  3. Bennett, T., Schaub, H.: Touchless electrostatic three-dimensional detumbling of large GEO debris. In: AAS/AIAA Spaceflight Mechanics Meeting, Santa Fe, New Mexico (2014)

    Google Scholar 

  4. Bombardelli, C., Pelaez, J.: Ion beam shepherd for contactless space debris removal. J. Guid. Control. Dyn. 34(3), 916–920 (2011)

    Google Scholar 

  5. Boyd, T., Sanderson, J.: The Physics of Plasmas. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  6. Bristow, J., Folta, D., Hartman, K.: A formation flying technology vision. AIAA Paper 5194, 19–21 (2000)

    Google Scholar 

  7. Chrystal, P., McKnight, D., Meredith, P.L., Schmidt, J., Fok, M., Wetton, C.: Space debris: on collision course for insurers? Technical Report, Swiss Reinsurance Company Ltd, Zürich, Switzerland (2011)

    Google Scholar 

  8. Chubb, J.: Two new designs of ‘field mill’ type fieldmeters not requiring earthing of rotating chopper. IEEE Trans. Ind. Appl. 26(6), 1178–1181 (1990)

    Google Scholar 

  9. Denton, M., Thomsen, M., Korth, H., Lynch, S., Zhang, J., Liemohn, M.: Bulk plasma properties at geosynchronous orbit. J. Geophys. Res. Space Phys. 110(A7) (2005). https://doi.org/10.1029/2004JA010861

  10. Farrell, W., Stubbs, T., Vondrak, R., Delory, G., Halekas, J.: Complex electric fields near the lunar terminator: the near-surface wake and accelerated dust. Geophys. Res. Lett. 34(14) (2007). https://doi.org/10.1029/2007GL029312

  11. Gibson, W.: The Method of Moments in Electromagnetics. CRC, Boca Raton (2014)

    Google Scholar 

  12. Grard, R.: Properties of the satellite photoelectron sheath derived from photoemission laboratory measurements. J. Geophys. Res. 78(16), 2885–2906 (1973)

    Google Scholar 

  13. Hartzell, C.M.: The dynamics of near-surface dust on airless bodies. Ph.D. Thesis, University of Colorado Boulder (2012)

    Google Scholar 

  14. Hogan, E., Schaub, H.: Relative motion control for two-spacecraft electrostatic orbit corrections. J. Guid. Control. Dyn. 36(1), 240–249 (2012)

    Google Scholar 

  15. Hogan, E., Schaub, H.: Impacts of tug and debris sizes on electrostatic tractor charging performance. Adv. Space Res. 55(2), 630–638 (2015)

    Google Scholar 

  16. Inter-Agency Space Debris Coordination Committee (IADC): IADC space debris mitigation guidelines. Technical Report, IADC-02-01, Inter-Agency Space Debris Coordination Committee (2007)

    Google Scholar 

  17. Jackson, T., Zimmerman, M., Farrell, W.: Concerning the charging of an exploration craft on and near a small asteroid. In: 45th Lunar and Planetary Science Conference (2014)

    Google Scholar 

  18. Jin, J.: The Finite Element Method in Electromagnetics. Wiley, Hoboken (2014)

    Google Scholar 

  19. Jo, S., Kim, S., Park, T.: Equally constrained affine projection algorithm. In: Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 955–959 (2004)

    Google Scholar 

  20. Johnson, N.: Protecting the GEO environment: policies and practices. Space Policy 15(3), 127–135 (1999)

    Google Scholar 

  21. Kaplan, M., Boone, B., Brown, R., Criss, T., Tunstel, E.: Engineering issues for all major modes of in situ space debris capture. In: Proceedings of the AIAA SPACE 2010 Conference & Exposition, Anaheim (2010)

    Google Scholar 

  22. Kemp, R., Sellen, Jr. J.: Plasma potential measurements by electron emissive probes. Rev. Sci. Instrum. 37(4), 455–461 (1966)

    Article  ADS  Google Scholar 

  23. Mizera, P., Fennell, J., Croley, D., Gorney, D.: Charged particle distributions and electric field measurements from s3-3. J. Geophys. Res. Space Phys. 86(A9), 7566–7576 (1981)

    Article  ADS  Google Scholar 

  24. Moorer, D., Schaub, H.: Electrostatic spacecraft reorbiter. US Patent 8,205,838 B2 (2012)

    Google Scholar 

  25. Mullen, E., Gussenhoven, M.: Scatha survey of high-level spacecraft charging in sunlight. J. Geophys. Res. 91(A2), 1474–1490 (1986)

    Article  ADS  Google Scholar 

  26. National Aeronautics and Space Administration (NASA): Satellite box score. Orbital Debris Q. News 20(1–2), 12–14 (2016)

    Google Scholar 

  27. Pfaff, R., Borovsky, J., Young, D.: Measurement Techniques in Space Plasmas: Particles. American Geophysical Union, Washington, DC (1998)

    Google Scholar 

  28. Schaub, H., Jasper, L.: Circular orbit radius control using electrostatic actuation for 2-craft configurations. Adv. Astronaut. Sci. 142, 681 (2011)

    Google Scholar 

  29. Schaub, H., Moorer, D.F.: Geosynchronous large debris reorbiter: Challenges and prospects. J. Astronaut. Sci. 59(1–2), 161–176 (2014). https://doi.org/10.1007/s40295-013-0011-8

    Google Scholar 

  30. Secker, P., Chubb, J.: Instrumentation for electrostatic measurements. J. Electrost. 16(1), 1–19 (1984)

    Article  Google Scholar 

  31. Seubert, C., Stiles, L., Schaub, H.: Effective coulomb force modeling for spacecraft in earth orbit plasmas. Adv. Space Res. 54(2), 209–220 (2014)

    Article  ADS  Google Scholar 

  32. Stevenson, D., Schaub, H.: Multi-sphere method for modeling electrostatic forces and torques. Adv. Space Res. 51(1), 10–20 (2013). https://doi.org/10.1016/j.asr.2012.08.014

    Article  ADS  Google Scholar 

  33. Stevenson, D., Schaub, H.: Optimization of sphere population for electrostatic multi-sphere method. IEEE Trans. Plasma Sci. 41(12), 3526–3535 (2013)

    Article  ADS  Google Scholar 

  34. Ulamec, S., Biele, J.: Surface elements and landing strategies for small bodies missions–philae and beyond. Adv. Space Res. 44(7), 847–858 (2009)

    Article  ADS  Google Scholar 

  35. Vasavada, H., Schaub, H.: Analytic solutions for equal mass four-craft static coulomb formation. J. Astronaut. Sci. 56(1), 17–40 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanspeter Schaub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Engwerda, H.J.A., Hughes, J., Schaub, H. (2018). Remote Sensing for Planar Electrostatic Characterization Using the Multi-Sphere Method. In: Vasile, M., Minisci, E., Summerer, L., McGinty, P. (eds) Stardust Final Conference. Astrophysics and Space Science Proceedings, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-319-69956-1_9

Download citation

Publish with us

Policies and ethics