Skip to main content

Convolutional and Recurrent Neural Networks for Activity Recognition in Smart Environment

  • Conference paper
  • First Online:
Towards Integrative Machine Learning and Knowledge Extraction

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10344))

Abstract

Convolutional Neural Networks (CNN) are very useful for fully automatic extraction of discriminative features from raw sensor data. This is an important problem in activity recognition, which is of enormous interest in ambient sensor environments due to its universality on various applications. Activity recognition in smart homes uses large amounts of time-series sensor data to infer daily living activities and to extract effective features from those activities, which is a challenging task. In this paper we demonstrate the use of the CNN and a comparison of results, which has been performed with Long Short Term Memory (LSTM), recurrent neural networks and other machine learning algorithms, including Naive Bayes, Hidden Markov Models, Hidden Semi-Markov Models and Conditional Random Fields. The experimental results on publicly available smart home datasets demonstrate that the performance of 1D-CNN is similar to LSTM and better than the other probabilistic models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. United Nations, Department of Economic and Social Affairs: United nations department of economic and social affairs, population division: World population ageing 2015 (2015)

    Google Scholar 

  2. Lutolf, R.: Smart home concept and the integration of energy meters into a home based system. In: Seventh International Conference on Metering Apparatus and Tariffs for Electricity Supply, 1992, IET, pp. 277–278 (1992)

    Google Scholar 

  3. Satpathy, L.: Smart housing: technology to aid aging in place: new opportunities and challenges. Ph.D. thesis, Mississippi State University (2006)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Deng, L., Li, J., Huang, J.T., Yao, K., Yu, D., Seide, F., Seltzer, M., Zweig, G., He, X., Williams, J., et al.: Recent advances in deep learning for speech research at microsoft. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8604–8608. IEEE (2013)

    Google Scholar 

  6. Längkvist, M., Karlsson, L., Loutfi, A.: A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recogn. Lett. 42, 11–24 (2014)

    Article  Google Scholar 

  7. Salakhutdinov, R.: Learning deep generative models. Ann. Rev. Stat. Appl. 2, 361–385 (2015)

    Article  Google Scholar 

  8. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  9. Matsugu, M., Mori, K., Mitari, Y., Kaneda, Y.: Subject independent facial expression recognition with robust face detection using a convolutional neural network. Neural Netw. 16(5), 555–559 (2003)

    Article  Google Scholar 

  10. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kasteren, T.L., Englebienne, G., Kröse, B.J.: Human activity recognition from wireless sensor network data: benchmark and software. In: Chen, L., Nugent, C., Biswas, J., Hoey, J. (eds.) Activity Recognition in Pervasive Intelligent Environments, pp. 165–186. Atlantis Press, Amsterdam (2011)

    Chapter  Google Scholar 

  13. Singh, D., Merdivan, E., Psychoula, I., Kropf, J., Hanke, S., Geist, M., Holzinger, A.: Human Activity recognition using recurrent neural networks. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2017. LNCS, vol. 10410, pp. 267–274. Springer, Cham (2017). doi:10.1007/978-3-319-66808-6_18

    Chapter  Google Scholar 

  14. Helal, S., Mann, W., El-Zabadani, H., King, J., Kaddoura, Y., Jansen, E.: The gator tech smart house: a programmable pervasive space. Computer 38(3), 50–60 (2005)

    Article  Google Scholar 

  15. Kidd, C.D., et al.: The aware home: a living laboratory for ubiquitous computing research. In: Streitz, N.A., Siegel, J., Hartkopf, V., Konomi, S. (eds.) CoBuild 1999. LNCS, vol. 1670, pp. 191–198. Springer, Heidelberg (1999). doi:10.1007/10705432_17

    Chapter  Google Scholar 

  16. Tapia, E.M., Intille, S.S., Larson, K.: Activity recognition in the home using simple and ubiquitous sensors. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 158–175. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24646-6_10

    Chapter  Google Scholar 

  17. Cook, D.J., Crandall, A.S., Thomas, B.L., Krishnan, N.C.: Casas: a smart home in a box. Computer 46(7), 62–69 (2013)

    Article  Google Scholar 

  18. Brumitt, B., Meyers, B., Krumm, J., Kern, A., Shafer, S.: EasyLiving: technologies for intelligent environments. In: Thomas, P., Gellersen, H.-W. (eds.) HUC 2000. LNCS, vol. 1927, pp. 12–29. Springer, Heidelberg (2000). doi:10.1007/3-540-39959-3_2

    Chapter  Google Scholar 

  19. Alam, M.R., Reaz, M.B.I., Ali, M.A.M.: A review of smart homespast, present, and future. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews) 42(6), 1190–1203 (2012)

    Article  Google Scholar 

  20. Ordónez, F.J., de Toledo, P., Sanchis, A.: Activity recognition using hybrid generative/discriminative models on home environments using binary sensors. Sensors 13(5), 5460–5477 (2013)

    Article  Google Scholar 

  21. Alemdar, H., Ertan, H., Incel, O.D., Ersoy, C.: Aras human activity datasets in multiple homes with multiple residents. In: Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pp. 232–235 (2013)

    Google Scholar 

  22. Fleury, A., Noury, N., Vacher, M.: Supervised classification of activities of daily living in health smart homes using svm. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2009, pp. 6099–6102. IEEE (2009)

    Google Scholar 

  23. Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Förster, K., Tröster, G., Lukowicz, P., Bannach, D., Pirkl, G., Ferscha, A., et al.: Collecting complex activity datasets in highly rich networked sensor environments. In: 2010 Seventh International Conference on Networked Sensing Systems (INSS), pp. 233–240. IEEE (2010)

    Google Scholar 

  24. Monekosso, D.N., Remagnino, P.: Anomalous behavior detection: supporting independent living. In: Monekosso, D., Remagnino, P., Kuno, Y. (eds.) Intelligent Environments, pp. 33–48. Springer, London (2009)

    Chapter  Google Scholar 

  25. Chen, L., Hoey, J., Nugent, C.D., Cook, D.J., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C (Applications and Reviews) 42(6), 790–808 (2012)

    Article  Google Scholar 

  26. Lapalu, J., Bouchard, K., Bouzouane, A., Bouchard, B., Giroux, S.: Unsupervised mining of activities for smart home prediction. Procedia Comput. Sci. 19, 503–510 (2013)

    Article  Google Scholar 

  27. Li, C., Biswas, G.: Unsupervised learning with mixed numeric and nominal data. IEEE Trans. Knowl. Data Eng. 14(4), 673–690 (2002)

    Article  Google Scholar 

  28. Longstaff, B., Reddy, S., Estrin, D.: Improving activity classification for health applications on mobile devices using active and semi-supervised learning. In: 2010 4th International Conference on- Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 1–7. IEEE (2010)

    Google Scholar 

  29. Hammerla, N.Y., Halloran, S., Ploetz, T.: Deep, convolutional, and recurrent models for human activity recognition using wearables. arXiv preprint arXiv:1604.08880 (2016)

  30. Yang, J., Nguyen, M.N., San, P.P., Li, X., Krishnaswamy, S.: Deep convolutional neural networks on multichannel time series for human activity recognition. IJCA I, 3995–4001 (2015)

    Google Scholar 

  31. Choi, S., Kim, E., Oh, S.: Human behavior prediction for smart homes using deep learning. In: RO-MAN, 2013 IEEE, pp. 173–179. IEEE (2013)

    Google Scholar 

  32. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  33. Chen, Y., Xue, Y.: A deep learning approach to human activity recognition based on single accelerometer. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1488–1492. IEEE (2015)

    Google Scholar 

  34. Geng, C., Song, J.: Human action recognition based on convolutional neural networks with a convolutional auto-encoder. In: 5th International Conference on Computer Sciences and Automation Engineering (ICCSAE 2015) (2015)

    Google Scholar 

  35. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  36. Zeng, M., Nguyen, L.T., Yu, B., Mengshoel, O.J., Zhu, J., Wu, P., Zhang, J.: Convolutional neural networks for human activity recognition using mobile sensors. In: 2014 6th International Conference on Mobile Computing, Applications and Services (MobiCASE), pp. 197–205. IEEE (2014)

    Google Scholar 

  37. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  38. Barnard-Wills, D.: The technology foresight activities of european union data protection authorities. Technol. Forecast. Soc. Change 116, 142–150 (2017)

    Article  Google Scholar 

  39. Holzinger, A., Plass, M., Holzinger, K., Crisan, G.C., Pintea, C.M., Palade, V.: A glass-box interactive machine learning approach for solving np-hard problems with the human-in-the-loop. arXiv:1708.01104 (2017)

  40. Holzinger, A.: On topological data mining. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 331–356. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43968-5_19

    Chapter  Google Scholar 

  41. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond euclidean data. IEEE Sig. Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been funded by the European Union Horizon2020 MSCA ITN ACROSSING project (GA no. 616757). The authors would like to thank the members of the project’s consortium for their valuable inputs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, D., Merdivan, E., Hanke, S., Kropf, J., Geist, M., Holzinger, A. (2017). Convolutional and Recurrent Neural Networks for Activity Recognition in Smart Environment. In: Holzinger, A., Goebel, R., Ferri, M., Palade, V. (eds) Towards Integrative Machine Learning and Knowledge Extraction. Lecture Notes in Computer Science(), vol 10344. Springer, Cham. https://doi.org/10.1007/978-3-319-69775-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69775-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69774-1

  • Online ISBN: 978-3-319-69775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics