Skip to main content

Bioethanol

  • Chapter
  • First Online:
Brewing and Distilling Yeasts

Part of the book series: The Yeast Handbook ((YEASTHDB))

  • 3134 Accesses

Abstract

As well as its use in alcoholic beverages, ethanol is employed as a liquid fuel, most often in combination (blended) with gasoline. Any fuel produced from biological materials (for example, agricultural residues and municipal waste) is generally referred to as a biofuel. The term generally refers to liquid transportation fuels. Ligand biofuels offer an alternative to fossil fuels. The primary characteristics of a suitable biofuel are: it has potential to replace fossil fuels, the production process must have a net positive energy balance, and it should have negative environmental impact. In Brazil, sugar cane is the principal raw material for bioethanol production. In the United States, starch (and latterly lignocellulosics) is the primary raw material. Whereas the sugar cane overall energy balance in Brazil for the 2005–2006 crop season was estimated to be an output/input ratio of 9.3:1, it is predicted to be at least 11:1 by 2020. Corn is estimated to be at least 1:1. The fermentation process for fuel ethanol production in both Brazil and the United States (and other countries) is far from the optimal physiological condition for the yeast. Several stress factors can influence the process, for example, high sugar and ethanol concentrations; elevated temperatures; pH variations; presence of toxic compounds such as acetic acid, acetaldehyde, diacetyl: and other factors. Genetic manipulation strategies with yeast that produce bioethanol aim to expand appropriate metabolic pathways, alleviate metabolic blocks, circumvent sugar transport limitations, and promote co-fermentation with C6 and C5 sugars in fermenting yeast species, metabolic engineering to enable cultures to ferment xylose and other pentoses and immobilization of xylose with isomerase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbas CA (2007) Yeast as ethanologens for biofuel production: limitations and prospects for continued biocatalytic improvements. In: Proceedings of the 26th international specialised symposium on yeasts, Sorrento, Italy, p165

    Google Scholar 

  • Abbott DA, Ingledew WM (2005) The importance of aeration strategy in fuel alcohol fermentations contaminated with Dekkera/Brettanomyces yeasts. Appl Microbiol Biotechnol 69:16–21

    Article  CAS  PubMed  Google Scholar 

  • Adams JM, Gallagher JA, Donnison IS (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21:569–574

    Article  CAS  Google Scholar 

  • Alves DMG (1994) Fatores que afetam a formação de ácidos orgânicos bem como outros parâmetros da fermentação alcoólica. MS Thesis, ESALQ Universidade de São Paulo, Piracicaba, SP

    Google Scholar 

  • Amorim HV, Basso LC (1991) PI9102738–1—processo para aumentar os teores alcoólicos do vinho e protéico da leve-dura após o térmico da fermentação. National Institute for Industrial Property of Brazil. MarcaPatente/jsp/pate ntes/patente Se arch Basico.jsp

    Google Scholar 

  • Amorim Neto HB, Yohannan DK, Bringhurst TB, Brosnan JM, Pearson SY, Walker JW, Walker GM (2009) Evaluation of a Brazilian fuel ethanol yeast strain for Scotch Whisky fermentations. J Inst Brew 115:198–207

    Article  Google Scholar 

  • Amorim HV, Basso LC, Lopes ML (2004) Evolution of ethanol production in Brazil. In: Bryce JH, Stewart GG (eds) Distilled spirits—tradition and innovation. Nottingham University Press, Nottingham, pp 143–148

    Google Scholar 

  • Amorim HV, Basso LC, Lopes ML (2009) Sugar cane juice and molasses, beet molasses and sweet sorghum: composition and usage. In: Ingledew WM, Kelsall DR, Austin GD, Kluhspies C (eds) The alcohol textbook: a reference for the beverage, fuel, and industrial alcohol industries, vol 1. Nottingham University Press, Nottingham, pp 39–46

    Google Scholar 

  • Ariyanti D, Hadiyanto H (2013) Ethanol production from whey by Kluyveromyces marxianus in batch fermentation system: kinetics parameters estimation. Bull Chem React Eng Catal 7:179–184

    Article  CAS  Google Scholar 

  • Basso LC, Amorim HV (1994) Estudo comparativo entre diferentes leveduras. Relat Anu Pesqui Ferment Alcool 14:71–114

    Google Scholar 

  • Basso LC, Amorim HV, Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Basso LC, Basso TO, Rocha SN (2011a) Ethanol production in Brazil: the industrial process and its impact on yeast fermentation. In: Bernardes MAS (ed) Biofuel production—recent developments and prospects. Intech, Rijeka, pp 85–100

    Google Scholar 

  • Basso TO, de Kok S, Dario M, Schlölg PS, Silva CP, Tonso A, Daran J-M, Gombert AK, van Maris AJA, Pronk JT, Stambuk BU (2011b) Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield. Metab Eng 13:694–703

    Article  CAS  PubMed  Google Scholar 

  • Bauer FF, Pretorius IS (2000) Yeast stress response and fermentation efficiency: how to survive the making of wine. S Afr J Enol Vitic 21:27–51

    CAS  Google Scholar 

  • Bauer FF, Pretorius IS (2001) Pseudohyphal and invasive growth in Saccharomyces Cerevisiae. Focus on biotechnology book series. In: Durieux A, Simon JP (eds) Applied microbiology, vol 2. Kluwer Academic, Dordrecht, pp 109–133

    Chapter  Google Scholar 

  • Bellissimi E, Ingledew WM (2005) Metabolic acclimatization: preparing active dry yeast for fuel ethanol production. Process Biochem 40:2205–2213

    Article  CAS  Google Scholar 

  • Bettiga M, Hahn-Hagerdal B, Gorwa-Grauslund MF (2008) Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains. Biotechnol Biofuels 1:16–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandel AK, Gonçalves BC, Strap JL, da Silva SS (2015) Biodelignification of lignocellulose substrates: an intrinsic and sustainable pretreatment strategy for clean energy production. Crit Rev Biotechnol 35:281–293

    Article  PubMed  CAS  Google Scholar 

  • Chandrasena G, Keerthipala AP, Walker GM (2006) Isolation and characterization of Sri Lankan yeast germplasm and its evaluation for alcohol production. J Inst Brew 112:302–307

    Article  Google Scholar 

  • Chin PM, Ingledew WM (1993) Effect of recycled laboratory backset on fermentation of wheat mashes. J Agric Food Chem 41:1158–1163

    Article  CAS  Google Scholar 

  • Chlup PH, Stewart GG (2011) Centrifuges in brewing. MBAA Tech Quart 48:46–50

    CAS  Google Scholar 

  • Choi GW, Kang HW, Moon SK (2009) Repeated-batch fermentation using flocculent hybrid, Saccharomyces cerevisiae CHFY0321 for efficient production of bioethanol. Appl Microbiol Biotechnol 84:261–269

    Article  CAS  PubMed  Google Scholar 

  • Chu BC, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441

    Article  CAS  PubMed  Google Scholar 

  • Contribuições dos espaços não-formais de educação para a formação da cultura científica. Jacobucci DFC (2008) Indexadores e Bases de Dados: Clase; Diadorim; EBSCO; Geodados; Latindex. Periódico incluído na Rede CARINIANA de Preservação Digital. Qualis: B4 (Enfermagem e Odontologia)

    Google Scholar 

  • Cunningham S, Stewart GG (2000) Acid washing and serial repitching of brewing ale strains of Saccharomyces cerevisiae in high gravity wort and the role of wort oxygenation conditions. J Inst Brew 106:389–402

    Article  Google Scholar 

  • Curry DH, Raman B, Gowen CM, Tschaplinski TJ, Land ML, Brown SD, Covalla SF, Klingeman DM, Yang ZK, Engle NL, Johnson CM, Rodriguez M, Shaw AJ, Kenealy WR, Lynd LR, Fong SS, Mielenz JR, Davison BH, Hogsett DA, Herring CD (2015) Genome-scale resources for Thermoanaerobacterium saccharolyticum. B.M.C. Syst Biol 9:10–19

    Google Scholar 

  • Davin L, Lewis N (2005) Lignin primary structures and dirigent sites. Curr Opin Biotechnol 16:407–415

    Article  CAS  PubMed  Google Scholar 

  • Della-Bianca BE, Basso TO, Stambuk BU, Basso LC, Gombert AK (2013) What do we know about the yeast strains from the Brazilian fuel ethanol industry? Appl Microbiol Biotechnol 97:979–991

    Article  CAS  PubMed  Google Scholar 

  • Den Haan R, Rose SH, Lynd LR, Van Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng. 9:87–94

    Google Scholar 

  • Duarte WF, Dragone G, Dias DR, Oliveira JM, Teixeira JA, Silva JB, Schwan RF (2010) Fermentative behavior of Saccharomyces strains during microvinification of raspberry juice (Rubus idaeus L.) Int J Food Microbiol 143:173–182

    Article  CAS  PubMed  Google Scholar 

  • Duval EH, Alves SL Jr, Dunn B, Sherlock G, Stambuck BU (2010) Microarray karyotyping of maltose-fermenting Saccharomyces cerevisiae yeasts with differing maltotriose utilization profiles reveals copy number variation in genes involved in maltose and maltotriose utilization. J Appl Microbiol 109:248–259

    CAS  PubMed  Google Scholar 

  • Ercan D, Demirci A (2015) Current and future trends for biofilm reactors for fermentation processes. Crit Rev Biotechnol 35:1–14

    Article  CAS  PubMed  Google Scholar 

  • Erratt JA, Stewart GG (1978) Genetic and biochemical studies on yeast strains able to utilize dextrins. J Am Soc Brew Chem 36:151–161

    CAS  Google Scholar 

  • Erratt JA, Stewart GG (1981) Fermentation studies using Saccharomyces diastaticus yeast strains. Dev Ind Microbiol 22:577–586

    CAS  Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354

    Article  CAS  PubMed  Google Scholar 

  • Garoma T, Ben-Khaled M, Beyene A (2012) Comparative resource analyses for ethanol produced from corn and sugarcane in different climatic zones. Int J Energy Res 36:1065–1076

    Article  CAS  Google Scholar 

  • Gibson BR (2011) Improvement on higher gravity brewery fermentation via wort enrichment and supplementation. J Inst Brew 117:268–284

    Article  CAS  Google Scholar 

  • Goh CS, Lee KT (2010) A visionary and conceptual macroalgae-based third-generation bioethanol (TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renew Sust Energ Rev 14:842–848

    Article  CAS  Google Scholar 

  • Goldemberg J (2008) The Brazilian biofuels industry. Biotechnol Biofuels 1:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomes DG, Guimarães PMR, Pereira FB, Teixeira JA, Domingues L (2012) Plasmid-mediate transfer of FLO1 into industrial Saccharomyces cerevisiae PE-2 strain creates a strain useful for repeat-batch fermentations involving flocculation sedimentation. Bioresour Technol 108:162–168

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves GAL, Prazeres DMF, Monteiro GA, Prather KLJ (2013) De novo creation of MG1655-derived E. coli strains specifically designed for plasmid DNA production. Appl Microbiol Biotechnol 97:611–620

    Article  PubMed  CAS  Google Scholar 

  • Green DI, Agu RC, Bringhurst TA, Brosnan JM, Jack FR, Walker GM (2015) Maximizing alcohol yields from wheat and maize and their co-products for distilling or bioethanol production. J Inst Brew 121:332–337

    Article  CAS  Google Scholar 

  • Gutierrez LE (1993) Changes in trehalose content of baker’s yeast as affected by octanoic acid. Sci Agric 50:460–463

    Article  CAS  Google Scholar 

  • Gutierrez LE, Orelli VFM (1991) Efeito do nitrito sobre a fermentação alcoólica realizada por Saccharomyces cerevisiae. Anais da Escola Superior de Agricultura “Luiz de Queiroz”. Piracicaba 48:41–54

    CAS  Google Scholar 

  • Gutierrez C, Ardourel M, Bremer E, Middendorf A, Boos W, Ehmann U (1989) Analysis and DNA sequence of the osmoregulated treA gene encoding the periplasmic trehalase of Escherichia coli K12. Mol Gen Genet 217:347–354

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez LE, Annicchino AVKO, Lucatti L, Leite da Silva SB (1991a) Aumento da produção de etanol a partir de melaço de cana-de-açúcar pela adição de benzoato. Anais da Escola Superior de Agricultura “Luiz de Queiroz”. Piracicaba 48:1–21

    CAS  Google Scholar 

  • Gutierrez LE, Annicchino AVKO, Lucatti L, Stipp JMS (1991b) Effects of acetic acid on alcoholic fermentation. Arq Biol Tecnol 34:235–242

    CAS  Google Scholar 

  • Hahn-Hägerdal B, Gorwa-Grauslund MF (2007) Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Factor 6:5

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007a) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  PubMed  CAS  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Jeppsson M, Gorwa-Grauslund MF (2007b) Metabolic engineering for pentose utilization in Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 108:147–177

    PubMed  Google Scholar 

  • Han S-F, Jin W-B, Tu R-J, Wu W-M (2015) Biofuel production from microalgae as feedstock: current status and potential. Crit Rev Biotechnol 35:255–268

    Article  CAS  PubMed  Google Scholar 

  • Herrero EM, Lopez Gonzalvez A, Ruiz MA, Lucas-García JA, Barbas C (2003) Uptake and distribution of zinc, cadmium, lead and copper in Brassica napus var. oleifera and Helianthus annus grown in contaminated soils. Int J Phytoremediation 5:153–167

    Article  CAS  PubMed  Google Scholar 

  • Ho NW, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ingledew WM (2005) Improvements in alcohol technology through advancements in fermentation technology. Getreidetechnologie 59:308–311

    Google Scholar 

  • Ito S, Takeyama K, Yamamoto A, Sawatsubashi S, Shirode Y, Kouzmenko A, Tabata T, Kato S (2004) In vivo potentiation of human oestrogen receptor α by Cdk7-mediated phosphorylation. Genes Cells 9:983–992

    Article  CAS  PubMed  Google Scholar 

  • Jamai L, Ettayebi K, Yamani ELJ, Ettayebi M (2007) Production of ethanol from starch by free and immobilized Candida tropicalis in the presence of α-amylase. Bioresour Technol 98:2765–2770

    Article  CAS  PubMed  Google Scholar 

  • Jin YS, Ni HY, Laplaza JM, Jeffries TW (2003) Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate d-xylulokinase activity. Appl Environ Microbiol 69:495–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson FX (2007) Bioenergy and the Sustainability Transition: from Local Resource to Global Commodity. World Energy Congress (WEC) Rome, 2007

    Google Scholar 

  • Karhumaa K, Hahn-Hagerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368

    Article  CAS  PubMed  Google Scholar 

  • Kasi D, Ragauskas AJ (2010) Switchgrass as an energy crop for biofuel production: a review of its ligno-cellulosic chemical properties. Energy Environ Sci 3:1182–1190

    Article  CAS  Google Scholar 

  • Khaw TS, Katakura Y, Koh J, Kondo A, Ueda M, Shioya S (2006) Evaluation of performance of different surface-engineered yeast strains for direct ethanol production from raw starch. Appl Microbiol Biotechnol 70:573–579

    Article  CAS  PubMed  Google Scholar 

  • Khew ST, Yang QJ, Tong YW (2008) Enzymatically crosslinked collagen mimetic dendrimers that promote integrin-targeted cell adhesion. Biomaterials 29:3034–3035

    Article  CAS  PubMed  Google Scholar 

  • Kline KL, Dale VH (2008) Biofuels: effects on land and fire. Science 321:199–201

    Article  CAS  PubMed  Google Scholar 

  • Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MS, de Laat WT, den Ridder JJ, Op den Camp HJ, van Dijken JP, Pronk JT (2003) High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4:69–78

    Article  CAS  PubMed  Google Scholar 

  • Leiper KA, Schlee C, Tebble I, Stewart GG (2006) The fermentation of beet sugar syrup to produce bioethanol. J Inst Brew 112:122–133

    Article  CAS  Google Scholar 

  • Lennartsson PR, Erlandsson P, Taherzadeh MJ (2014) Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour Technol 165:3–8

    Article  CAS  PubMed  Google Scholar 

  • Logothetis NK, Augath M, Murayama Y, Rauch A, Sultan F, Goense J, Oeltermann A, Merkle H (2010) The effects of electrical microstimulation on cortical signal propagation. Nat Neurosci 13:1283–1291

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172

    Article  CAS  PubMed  Google Scholar 

  • Mabee WE (2007) Policy options to support biofuel production. Adv Biochem Eng Biotechnol 108:329–357

    CAS  PubMed  Google Scholar 

  • Macedo IC, Seabra JEA, Silva JEAR (2008) Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 32:582–595

    Article  CAS  Google Scholar 

  • Medina VG, Almering MJ, van Maris AJ, Pronk JT (2010) Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor. Appl Environ Microbiol 76:190–195

    Article  CAS  Google Scholar 

  • Miedl M, Cornfine S, Leiper KA, Shepherd M, Stewart GG (2007) Low-temperature processing of wheat for bioethanol production. J Am Soc Brew Chem 65:183–191

    CAS  Google Scholar 

  • Miranda M Jr, Batistote M, Cilli EM, Ernandes JR (2009) Sucrose fermentation by Brazilian ethanol production yeasts in media containing structurally complex nitrogen sources. J Inst Brew 115:191–197

    Article  CAS  Google Scholar 

  • Montgomery CT, Smith MB (2010) Hydraulic fracturing – history of an enduring technology. J Petrol Technol 62:26–32

    Article  CAS  Google Scholar 

  • Mousdale DM (2008) Biofuels. Biotechnology, chemistry and sustainable development. CRC Press, Boca Raton, FL

    Book  Google Scholar 

  • Nair SG, Sindhu R, Shankar S (2008) Purification and biochemical characterization of two xylanases from Aspergillus sydowii SBS 45. Appl Biochem Biotechnol 149:229–243

    Article  CAS  PubMed  Google Scholar 

  • Nevoigt E (2008) Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 72:379–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien D, Woolverton M. (2009) Recent trends in U.S. Wet and dry corn milling production. AgMRC Renewable Energy Newsletter, February 2009

    Google Scholar 

  • Ogata T, Iwashita Y, Kawada T (2017) Construction of a brewery yeast expressing the glucoamylase gene STA1 by mating. J Inst Brew 123:66–69

    Article  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Pasteur L (1879) Studies on fermentation: the diseases of beer, their causes and the means of preventing them. Translated by Frank Faulkner. MacMillan

    Google Scholar 

  • Paulillo SCL, Yokoya F, Basso LC (2003) Mobilization of endogenous glycogen and trehalose of industrial yeasts. Braz J Microbiol 34:249–254

    Article  Google Scholar 

  • Pavlak MCM, de Abreu-Lima TL, Carreiro SC, de Lima Paulillo SC (2011) Study of fermentation of the hydrolyzate sweet potato using different strains of Saccharomyces cerevisiae. Química Nova 34:82–86

    Article  CAS  Google Scholar 

  • Pereira FB, Guimaraes PM, Teixeira JA, Domingues L (2010) Selection of Saccharomyces cerevisiae strains for efficient very high gravity bio-ethanol fermentation processes. Biotechnol Lett 32:1655–1661

    Article  CAS  PubMed  Google Scholar 

  • Pereira FB, Gomes DG, Guimaraes PM, Teixeira JA, Domingues L (2011) Cell recycling during repeated very high gravity bio-ethanol fermentations using the industrial Saccharomyces cerevisiae stain PE-2. Biotechnol Lett 34:45–53

    Article  PubMed  CAS  Google Scholar 

  • Piper PW (1997) The yeast heat shock response. In: Hohmann S, Mager WH (eds) Yeast stress responses. R. G. Landes, Austin, TX, pp 75–99

    Google Scholar 

  • Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M (1997) Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H(+)-ATPase. Cell Stress Chaperones 2:12–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qureshi N, Saha B, Dien B, Cotta MA (2010) Production of butanol (a biofuel) from agricultural residues: Part I – Use of barley straw hydrolysate. Biomass Bioenergy 34:559–565

    Article  CAS  Google Scholar 

  • Rogers PL, Jeon YJ, Lee KJ, Lawford HG (2007) Zymomonas mobilis for fuel ethanol and higher value products. Adv Biochem Eng Biotechnol 108:263–288

    CAS  PubMed  Google Scholar 

  • Rommer T (2010) World biofuels production potential energy policies, politics and prices series. Nova Science

    Google Scholar 

  • Russell I, Stewart GG (eds) (2014) Whisky: technology, production and marketing, 2nd edn. Academic Press (Elsevier), Boston

    Google Scholar 

  • Russell I, Jones RM, Stewart GG (1987) Yeast – the primary industrial microorganism. In: Stewart GG, Russell I, Klein RD, Hiebsch RR (eds) CRC biological research on industrial yeasts. CRC Press, Boca Raton, pp 1–20

    Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  CAS  PubMed  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240

    Article  CAS  PubMed  Google Scholar 

  • Shapouri H, Gallagher PW, Nefstead W, Schwartz RH, Noe S, Conway R (2008) 2008 Energy balance for the corn-ethanol industry. United States Department of Agriculture

    Google Scholar 

  • Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36:139–147

    Article  CAS  PubMed  Google Scholar 

  • Sills AM, Stewart GG (1985) Studies on cellobiose metabolism by yeasts. Dev Ind Microbiol 26:527–534

    CAS  Google Scholar 

  • Silva JPA, Mussatto SI, Roberto IC, Teixeira JA (2011) Ethanol production from xylose by Pichia stipitis NRRL Y-7124 in a stirred tank bioreactor. Braz J Chem Eng 28:151–156

    Article  CAS  Google Scholar 

  • Simpson WJ, Hammond JRM (1989) The response of brewing yeasts to acid washing. J Inst Brew 95:347–354

    Article  Google Scholar 

  • Skoog K, Hahn-Hägerdal B (1990) Effect of oxygenation on xylose fermentation by Pichia stipitis. Appl Environ Microbiol 56:3389–3394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slapack GE, Russell I, Stewart GG (1987) Thermophilic microbes in ethanol production. CRC Press, Boca Raton, FL

    Google Scholar 

  • Slininger PJ, Bolen PL, Kurthman CP (1987) Pachysolen tannophilus: properties and process considerations for ethanol production from d-xylose. Enzyme Microb Technol 9:5–15

    Article  CAS  Google Scholar 

  • Solomon BD, Barnes JR, Halvorsen KE (2007) Grain and cellulosic ethanol: history, economics, and energy policy. Biomass Bioenergy 31:416–425

    Article  Google Scholar 

  • Stambuk BU, Dunn B, Alves SL, Duval EH, Sherlock G (2009) Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Res 19:2271–2278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steen EJ, Chan R, Prasad N, Myers M, Petzold RA, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Factor 7:36

    Article  CAS  Google Scholar 

  • Stewart GG (2014) Brewing intensification. American Society for Brewing Chemists, St. Paul, MN

    Google Scholar 

  • Stewart GG, Russell I (2009) An introduction to brewing science and technology. Series lll, Brewer’s yeast, 2nd edn. The Institute of Brewing and Distilling, London

    Google Scholar 

  • Stewart GG, Hill AE, Russell I (2013) 125th Anniversary review – developments in brewing and distilling yeast strains. J Inst Brew 119:202–220

    Article  CAS  Google Scholar 

  • Tanimura A, Nakamura T, Watanabe I, Ogawa J, Shima J (2012) Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature. Springer Plus 27:1–7

    Google Scholar 

  • Thomas KC, Ingledew WM (1992) Production of 21% (v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes. J Ind Microbiol 10:61–68

    Article  CAS  Google Scholar 

  • Walker GM (1998) Yeast physiology and biotechnology. Wiley, England

    Google Scholar 

  • Walker GM (2011a) 125th Anniversary review: fuel alcohol: current production and future challenges. J Inst Brew 117:3–22

    Article  Google Scholar 

  • Walker R (2011b) The impact of Brazilian biofuel production on Amazônia. Ann Assoc Am Geogr 101:929–938

    Article  Google Scholar 

  • Wilhelm WW, Johnson JMF, Karlen DL, Lightle DT (2007) Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99:1665–1667

    Article  CAS  Google Scholar 

  • Wilson N (2014) Contamination: bacteria and wild yeast in a whisky fermentation. In: Russell I, Stewart GG (eds) Whisky: technology, production and marketing. Elsevier, London, pp 147–154

    Chapter  Google Scholar 

  • Yan Z, Delannoy M, Ling C, Daee D, Osman F, Muniandy PA, Shen X, Oostra AB, Du H, Steltenpool J, Lin T, Schuster B, Décaillet C, Stasiak A, Stasiak AZ, Stone S, Hoatlin ME, Schindler D, Woodcock CL, Joenje H, Sen R, de Winter JP, Li L, Seidman MM, Whitby MC, Myung K, Constantinou A, Wang W (2010) A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol Cell 37:865–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanin G, Santana C, Bon E, Giordano R, de Moraes F, Andrietta S, Neto C, Macedo I, Lahr FD, Ramos L, Fontana J (2000) Brazilian bioethanol program. Appl Biochem Biotechnol 84–86:1147–1161

    Article  PubMed  Google Scholar 

  • Zarattini RA, Williams JW, Ernandes JR, Stewart GG (1993) Bacterial-induced flocculation in selected brewing strains of Saccharomyces. Cerevisiae Biotechnol 4:65–70

    Google Scholar 

  • Zhao XQ, Bai FW (2009) Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production. J Biotechnol 144:23–30

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stewart, G.G. (2017). Bioethanol. In: Brewing and Distilling Yeasts. The Yeast Handbook. Springer, Cham. https://doi.org/10.1007/978-3-319-69126-8_9

Download citation

Publish with us

Policies and ethics