Skip to main content

Phase-Change Memory Device Architecture

  • Chapter
  • First Online:
Phase Change Memory

Abstract

In this chapter we review the main categories of device architectures that have been studied and realized in order to exploit the phase-change mechanism in electronic devices.

Starting from their first realization at the end of the 1960s, it was apparent that a critical issue for PCM was the programming current (reset current, I RESET) needed to amorphize the material.

In order to minimize the power consumption, several architectures have been proposed, and we will illustrate their characteristics, their advantages, and their weaknesses.

The element used in order to transform the current flowing through the device into heat and then temperature (hence the name “heater”) has then become a peculiar element of PCM, and the choices for its construction have deep implications, not only on I RESET but also on the overall performance of the device.

The presence, the position, and the actual geometrical structure of the heater allow the creation of useful classification of PCM architectures that we will exploit in our analysis:

  • Self-heating

  • Built-in heater

  • Remote heater

We will explore these categories through this chapter, and we will highlight advantages and disadvantages for each of them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Boniardi, A. Redaelli, C. Cupeta, F. Pellizzer, L. Crespi, G. D’Arrigo, A.L. Lacaita, G. Servalli, Optimization metrics for phase change memory (PCM) cell architectures. in International Electron Devices Meeting, 2014, pp. 681–684

    Google Scholar 

  2. T. Happ, M. Breitwisch, A. Schrott, J. Philipp, M. Lee, R. Cheek, T. Nirschl, M. Lamorey, C. Ho, S. Chen, C. Chen, E. Joseph, S. Zaidi, G. Burr, B. Yee, Y. Chen, S. Raoux, H. Lung, R. Bergmann, C. Lam, Novel one-mask self-heating pillar phase change memory. in IEEE Symposium on VLSI Technology Digest of Technical Papers, 2006 pp.120–121

    Google Scholar 

  3. M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, R.A.M. Wolters, Low-cost and nanoscale non-volatile memory concept for future silicon chips. Nat. Mater. 4(4), 347–352 (2005)

    Article  Google Scholar 

  4. D. Kang, D. Lee, H.-M. Kim, S.-W. Nam, M.-H. Kwon, K.-B. Kim, Analysis of the electric field induced elemental separation of Ge2Sb2Te5 by transmission electron microscopy. Appl. Phys. Lett. 95(011904), 1–3 (2009)

    Google Scholar 

  5. L. Crespi, A. L. Lacaita, M. Boniardi, E. Varesi, A. Ghetti, A. Redaelli, G. D’Arrigo, Modeling of atomic migration phenomena in phase change memory devices. in IEEE International Memory Workshop, 2015 pp. 1–4

    Google Scholar 

  6. Y.C. Chen, C.T. Rettner, S. Raoux, G.W. Burr, S.H. Chen, R.M. Shelby, M. Salinga, W.P. Risk, T.D. Happ, G.M. McClelland, M. Breitwisch, A. Schrott, J.B. Philipp, M.H. Lee, R. Cheek, T. Nirschl, M. Lamorey, C.F. Chen, E. Joseph, S. Zaidi, B. Yee, H.L. Lung, R. Bergmann, C. Lam, Ultra-thin phase-change bridge memory device using GeSb. in International Electron Devices Meeting, 2006, pp. 1–4

    Google Scholar 

  7. W. Kim, M. BrightSky, T. Masuda, N. Sosa, S. Kim, R. Bruce, F. Carta, G. Fraczak, H.Y. Cheng, A. Ray, Y. Zhu, H.L. Lung, K. Suu, C. Lam, ALD-based confined PCM with a metallic liner toward unlimited endurance. in International Electron Devices Meeting, 2016 pp. 83–86

    Google Scholar 

  8. S.R. Ovshinsky, H. Fritzsche, Amorphous semiconductors for switching, memory, and imaging applications. IEEE Trans. Electron Devices 20, 91–105 (1973)

    Article  Google Scholar 

  9. M. Breitwisch, T. Nirschl, C.F. Chen, Y. Zhu, M.H. Lee, M. Lamorey, G.W. Burr, E. Joseph, A. Schrott, J.B. Philipp, R. Cheek, T.D. Happ, S.H. Chen, S. Zaidi, P. Flaitz, J. Bruley, R. Dasaka, B. Rajendran, S. Rossnagel, M. Yang, Y.C. Chen, R. Bergmann, H.L. Lung, C. Lam, Novel lithography-independent pore phase change memory. in IEEE Symposium on VLSI Technology Digest of Technical Papers, 2007 pp. 100–101

    Google Scholar 

  10. S. Lai, T. Lowrey, OUM–A 180 nm nonvolatile memory cell element technology for standalone and embedded applications. in International Electron Devices Meeting, 2001 pp. 803–806

    Google Scholar 

  11. Y. Matsui, K. Kurotsuchi, O. Tonomura, T. Morikawa, M. Kinoshita, Y. Fujisaki, N. Matsuzaki, S. Hanzawa, M. Terao, N. Takaura, H. Moriya, T. Iwasaki, M. Moniwa, T. Koga, Ta2O5 interfacial layer between GST and W plug enabling low power operation of phase change memories. in International Electron Devices Meeting, 2006 pp. 769–772

    Google Scholar 

  12. C. Cabral Jr., K.N. Chen, L. Krusin-Elbaum, V. Deline, Irreversible modification of Ge2Sb2Te5Ge2Sb2Te5 phase change material by nanometer-thin Ti adhesion layers in a device-compatible stack. Appl. Phys. Lett. 90, 051908 (2007)

    Article  Google Scholar 

  13. S.J. Ahn, Y.N. Hwang, Y.J. Song, S.H. Lee, S.Y. Lee, J.H. Park, C.W. Jeong, K.C. Ryoo, J.M. Shin, J.H. Park, Y. Fai, J.H. Oh, G.H. Koh, G.T. Jeong, S.H. Joo, S.H. Choi, Y.H. Son, J.C. Shin, Y.T. Kim, H.S. Jeong and Kinam Kim. Highly reliable 50nm contact cell technology for 256Mb PRAM. in IEEE Symposium on VLSI Technology Digest of Technical Papers, 2005 pp. 98–99

    Google Scholar 

  14. J.H. Oh, J.H. Park; Y.S. Lim; H.S. Lim; Y.T. Oh; J.S. Kim; J.M. Shin; J.H. Park; Y.J. Song; K.C. Ryoo; D.W. Lim; S.S. Park; J.I. Kim; J.H. Kim; J. Yu; F. Yeung; C.W. Jeong; J.H. Kong; D.H. Kang; G.H. Koh; G.T. Jeong; H.S. Jeong; K. Kim, Full integration of highly manufacturable 512Mb PRAM based on 90nm. in IEEE International Electron Devices Meeting, 2006 pp. 1–4

    Google Scholar 

  15. F. Pellizzer, A. Pirovano, F. Ottogalli, M. Magistretti, M. Scaravaggi, P. Zuliani, M. Tosi, A. Benvenuti, P. Besana, S. Cadeo, T. Marangon, R. Morandi, R. Piva, A. Spandre, R. Zonca, A. Modelli, E. Varesi, T. Lowrey, A. Lacaita, G. Casagrande, P. Cappelletti, R. Bez, Novel μTrench phase-change memory cell for embedded and stand-alone NVM applications. Proc. Symp. VLSI Technol., 18–19 (2004)

    Google Scholar 

  16. F. Pellizzer, A. Benvenuti, B. Gleixner, Y. Kim, B. Johnson, M. Magistretti, T. Marangon, A. Pirovano, R. Bez, G. Atwood A 90nm Phase Change Memory Technology for Stand-Alone NVM Applications. in Proceedings Symposium on VLSI Technology (2006)

    Google Scholar 

  17. A. Pirovano, F. Pellizzer, I. Tortorelli, R. Harrigan, M. Magistretti, P. Petruzza, E. Varesi, D. Erbetta, T. Marangon, F. Bedeschi, R. Fackenthal, G. Atwood, R. Bez. Self-aligned μTrench phase-change memory cell architecture for 90nm technology and beyond. in Proceedings of ESSDERC, 2007 pp. 222–225

    Google Scholar 

  18. G. Servalli, A 45nm generation phase change memory technology. in Proc IEEE International Electron Devices Meeting, 2009 pp. 1–4

    Google Scholar 

  19. C. Villa, D. Mills, G. Barkley, H. Giduturi, S. Schippers, D. Vimercati, A 45nm 1Gb 1.8V phase-change memory. ISSCC 53, 270–271 (2010)

    Google Scholar 

  20. D.H. Im, J. I. Lee, S.L. Cho, H.G. An, D.H. Kim, I.S. Kim, H. Park, D.H. Ahn, H. Horii, S.O. Park, U. I. Chung, and J.T. Moon, A unified 7.5nm dash-type confined cell for high performance PRAM device. in, IEEE International Electron Devices Meeting, 2008 pp. 1–4

    Google Scholar 

  21. W. S. Chen, C.M. Lee, D.S. Chao, Y.C. Chen, F. Chen, C.W. Chen, P.H. Yen, M.J. Chen, W.H. Wang, T.C. Hsiao, J.T. Yeh, S.H. Chiou, M.Y. Liu, T.C. Wang, L.L. Chein, C.M. Huang, N.T. Shih, L.S. Tu, D. Huang, T.H. Yu, M.J. Kao, M.-J. Tsai, A novel cross-spacer phase change memory with ultra-small lithography independent contact area. in, IEEE International Electron Devices Meeting, 2007 pp. 319–322

    Google Scholar 

  22. S. Kim, B. Lee, M. Asheghi, F. Hurkx, J.P. Reifenberg, K.E. Goodson, H.S.P. Wong, Resistance and threshold switching voltage drift behavior in phase-change memory and their temperature dependence at microsecond time scales studied using a micro-thermal stage. IEEE Transactions on Electron Devices 58, 584–592 (2011)

    Article  Google Scholar 

  23. R. Singh, G. Slovin, M. Xu, A. Khairi, S. Kundu, T.E. Schlesinger, J.A. Bain, J. Paramesh, A 3/5 GHz reconfigurable CMOS low-noise amplifier integrated with a four-terminal phase-change RF switch. in IEEE International Electron Devices Meeting, 2015 pp. 636–639

    Google Scholar 

  24. M. Xu, G. Slovin, J. Paramesh, T.E. Schlesinger, J.A. Bain, Thermometry of a high temperature high speed micro heater. Rev. Sci. Instrum. 87(2), 024904 (2016)

    Google Scholar 

  25. F. Xiong, A. Liao, E. Pop, Inducing chalcogenide phase change with ultra-narrow carbon nanotube heaters. Appl. Phys. Lett. 95, 243103 (2009)

    Article  Google Scholar 

  26. C.H. Lam, Storage class memory. in IEEE international conference on solid-state and integrated circuit technology, 2010 pp. 1080–1083

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Pellizzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pellizzer, F. (2018). Phase-Change Memory Device Architecture. In: Redaelli, A. (eds) Phase Change Memory. Springer, Cham. https://doi.org/10.1007/978-3-319-69053-7_9

Download citation

Publish with us

Policies and ethics