Skip to main content

Interesting Mechanical Properties of 3D Warp Interlock Fabrics

  • Chapter
  • First Online:
Narrow and Smart Textiles

Abstract

The purpose of this study is to analyse the influence of weaving parameters of 3D warp interlock fabrics on their mechanical properties. Using the same yarns in the warp and weft direction, four main product and process parameters have been chosen as the weave diagram, the weft density and positions of stuffer and linking warp yarns inside the woven structure. Based on several 3D warp interlock architecture produced on the same dobby loom, the mechanical characterization of these fabrics have been performed by unidirectional tensile and bending tests, both in the warp and weft directions. Thanks to this complete protocol; a comparison between 3D warp interlock woven architectures has been done to reveal the influence of process and product parameters on their mechanical performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nauman, S. (2008). Modélisation Géométrique de tissu 3D Interlock. Roubaix, France, Master report: Laboratoire GEMTEX.

    Google Scholar 

  2. Nauman, S. (2011). Geometrical modelling and characterization of 3D warp interlock composites and their on-line structural health monitoring using flexible textile sensors, University of Lille 1, Lille, Ph-D thesis. http://www.theses.fr/en/2011LIL10010, 24/03/2011.

  3. Lapeyronnie, P. (2010). Mise en œuvre et comportement mécanique de composites organiques renforcés de structures 3D interlocks. Université de Lille 1, Douai, France, Thèse de doctorat http://www.theses.fr/en/2010LIL10126, 14/12/2010.

  4. Ha-Minh, C. (2011). Comportement mécanique des matériaux tissés soumis à un impact balistique: approches expérimentale, numérique et analytique. Université de Lille 1, Lille, France, Thèse de doctorat http://www.theses.fr/en/2011LIL10184, 17/11/2011.

  5. Lefebvre, M. (2011). Résistance à l’impact balistique de matériaux composites à renforts Interlocks tissés. Application au blindage de véhicules. Université de Valenciennes, Valenciennes, Thèse de doctorat http://www.theses.fr/en/2011VALE0030, 07/12/2011.

  6. Provost, B. (2013). Étude et Réalisation d’une solution à renfort tissé interlock pour la protection balistique de véhicule. Université de Valenciennes, Valenciennes, Thèse de doctorat http://www.theses.fr/en/2013VALE0003, 14/01/2013.

  7. Cristian, I., Boussu, F., & Nauman, S. (2010). Interesting parameters of 3D warp interlock fabrics influencing the mechanical properties of the final composite structures. In 10th World textile conference, Vilnius, Lithuania, 21–23 June, 2010.

    Google Scholar 

  8. Tong, L., Mouritz, A. P., & Bannister, M. K. (2002). 3D fibre reinforced composite materials. London: Elsevier Applied Science. ISBN 978-0-08-043938-9.

    Google Scholar 

  9. Hu, J. (2008). 3D fibrous assemblies, properties applications and modelling of three dimensional textile structure. Woodhead Publishing, vol. 74. ISBN-978-1-84569-377-0.

    Google Scholar 

  10. Sheng, S. Z., & Hoa, S. V. (2003). Modelling of 3D angle interlock woven fabric composites. Journal of Thermoplastic Composite Materials, 16(1), 45–59. https://doi.org/10.1177/0892705703016001206.

    Article  Google Scholar 

  11. Mouritz, A. P., Bannister, M. K., Falzon, P. J., & Leong, K. H. (1999). Review of applications for advanced three-dimensional fibre textile composites. Composites Part A Applied Science and Manufacturing, 30(12), 1445–1461. https://doi.org/10.1016/S1359-835X(99)00034-2.

    Article  Google Scholar 

  12. Nauman, S., Boussu, F., Cristian, I., & Koncar, V. (2009). Impact of 3D woven structure onto the high performance yarn properties. In Second conference on intelligent textiles and mass customisation, textile composites workshop, Casablanca, Morocco, 12–14th November 2009.

    Google Scholar 

  13. Brandt, J., Drechsler, K., Arendts, F.J. (1996). Mechanical performance of composites based on various three dimensional woven fibre preforms. Composites Sciences and Technology, 56(3), 381–386. doi:10.1016/0266-3538(95)00135-2.

  14. Lapeyronnie, P., Le Grognec, P., Binetruy, C., & Boussu, F. (2010). Angle-interlock reinforcements: Weaving and the mechanical properties of composites. JEC Composites, 58, 58–59.

    Google Scholar 

  15. Tan, P., Tong, L., & Steven, G. P. (1999). Micromechanics models for mechanical and thermomechanical properties of 3D through-the-thickness angle interlock woven composites. Composites: Part A, 30(5), 637–648. https://doi.org/10.1016/S1359-835X(98)00176-6.

    Article  Google Scholar 

  16. Tsai, K. H., Chiu, C. H., & Wu, T. H. (2000). Fatigue behaviour of 3D multi-layer angle interlock woven composite plates. Composites Science and Technology, 60, 241–248. https://doi.org/10.1016/S0266-3538(99)00120-7.

    Article  CAS  Google Scholar 

  17. Baucom, J.N., & Zikry, M.A. (2003). Evolution of failure mechanisms in 2D and 3D woven composite systems under quasi-static perforation. Journal of Composite Materials, 37(18), 651–1674, 01/01 2003. doi:10.1177/0021998303035178.

  18. Tanzawa, Y., Watanabe, N., & Ishikawa, T. (1999). Interlaminar fracture toughness of 3-D orthogonal interlocked fabric composites. Composites Science and Technology, 59(8), 1261–1270. doi:10.1016/S0266-3538(98)00167-5.

  19. Chen, F., & Hodgkinson, J.M. (2009). Impact behaviour of composites with different fibre architecture. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 223(7), 1009–1017, 01/11 2009.

    Google Scholar 

  20. Naik, N. K., Azad, S. K., Durga Prasad, N. M., & Thur, P. (2001). Stress and failure analysis of 3D orthogonal interlock woven composites. Journal of Reinforced Plastics and Composites, 20(17), 1485–1523. https://doi.org/10.1177/073168401772679110.

    Article  CAS  Google Scholar 

  21. Padaki, N.V., Alagirusamy, R., Deopura, B.L., & Fangueiro, R. (2010). Influence of preform interlacement on the low velocity impact behavior of multilayer textile composites. Journal of Industrial Textiles, 40(2), 171–185, 26/05 2010. DOI:10.1177/1528083710366723.

  22. Tung, P.S., & Jayaraman, S. (1991). Three dimensional multilayer woven preforms for composites. In High-tech fibrous materials. Washington, DC, Washington, USA: ACS Publisher, vol. 457, Chap. 4, pp. 53–80. DOI:10.1021/bk-1991-0457.ch004.

  23. Coman, F., Herszberg, L., & Bannister, M. (1996). Design and analysis of 3D woven preforms for composite structures. Science and Engineering of Composite Materials, 5(2), 83–96.

    Article  CAS  Google Scholar 

  24. Boussu, F., Cristian, I., & Nauman, S. (2015). General definition of 3D warp interlock fabric architecture. Composites: Part B, 81, 171–188. https://doi.org/10.1016/j.compositesb.2015.07.013.

    Article  Google Scholar 

  25. Hu, J. (2008). 3D fibrous assemblies, properties applications and modelling of three dimensional textile structure. Woodhead Publishing, vol. 74.

    Google Scholar 

  26. Lomov, S., Gusakov, A. V., Huysmans, G., Prodromou, A., & Verpoest, I. (2000). Textile geometry preprocessor for meso-mechanical models of woven composites. Composites Science and Technology, 60, 2083–2095.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Boussu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Boussu, F., Picard, S., Soulat, D. (2018). Interesting Mechanical Properties of 3D Warp Interlock Fabrics. In: Kyosev, Y., Mahltig, B., Schwarz-Pfeiffer, A. (eds) Narrow and Smart Textiles. Springer, Cham. https://doi.org/10.1007/978-3-319-69050-6_3

Download citation

Publish with us

Policies and ethics