Skip to main content

Fuzzy Object Growth Model for Neonatal Brain MR Understanding

  • Chapter
  • First Online:

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 140))

Abstract

This chapter summaries a brain region segmentation method for newborn using magnetic resonance (MR) images. The method deploys fuzzy object growth model (FOGM) which is an extension of fuzzy object model. It is a 4-dimensional model which gives a prior knowledge of brain shape and position at any growing time. First we calculate 4th dimension of FOGM, called growth index in this chapter. Because the growth index will be different from person to person even in the same age group, the method estimates the growth index from cerebral shape using Manifold learning. Using the growth index, FOGM is constructed from the training dataset. To recognize the brain region in evaluating subject, it first estimates the growth index. Then, the brain region is segmented using fuzzy connected image segmentation with the FOGM matched by the growth index. To evaluate the method, this study segments the parenchymal region of 16 subjects (revised age; 0–2 years old) using synthesized FOGM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Braak, H., Braak, E.: Neuropathologic staging of alzheimer-related changes. Acta Neuropathol. 82(4), 239–259 (1991)

    Article  Google Scholar 

  2. Kitagaki, H., Mori, E., Yamaji, S., Ishii, K., Hirono, N., Kobashi, S., Hata, Y.: Frontotemporal dementia and alzheimer disease: evaluation of cortical atrophy with automated hemispheric surface display generated with MR images. Radiology 208(2), 431–439 (1998)

    Article  Google Scholar 

  3. Padilla, P., Lopez, M., Gorriz, J.M., Ramirez, J., Salas-Gonzalez, D., Alvarez, I.: NMF-SVM based CAD tool applied to functional brain images for the diagnosis of alzheimer’s disease. IEEE Trans. Med. Imaging 31(2), 207–216 (2012)

    Article  Google Scholar 

  4. Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. Int. J. Comput. Vis. 2010(2), 255–266 (2010)

    Article  Google Scholar 

  5. Aljabar, P., Wolz, R., Srinivasan, L., Counsell, S., Boardman, J.P., Murgasova, M., Doria, V., Rutherford, M.A., Edwards, A.D., Hajnal, J.V., Rueckert, D.: Combining morphological information in a manifold learning framework: application to neonatal MRI. Lect. Notes Comput. Sci. Med. Image Comput. Comput. Assist. Interv. 6363, 1–8 (2010)

    Google Scholar 

  6. Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph. Models Process. 58(3), 246–261 (1996)

    Article  Google Scholar 

  7. Prastawa, M., Gilmore, J.H., Lin, W., Gerig, G.: Automatic segmentation of MR images of the developing newborn brain. Med. Image Anal. 9(5), 457–466 (2005)

    Article  Google Scholar 

  8. Xue, H., Srinivasan, L., Jiang, S., Rutherford, M., Edwards, A.D., Rueckert, D., Hajnal, J.V.: Automatic segmentation and reconstruction of the cortex from neonatal MRI. Neuroimage 38(3), 461–477 (2007)

    Article  Google Scholar 

  9. Kobashi, S., Udupa, J.K.: Fuzzy object models for newborn brain MR image segmentation. In: Proceedings of SPIE Medical Imaging 2013, vol. 8672 (2013)

    Google Scholar 

  10. Udupa, J.K., Odhner, D., Falcao, A.X., Ciesielski, K.C., Miranda, P.A.V., Vaideeswaran, P., Mishra, S., Grevera, G.J., Saboury, B., Torigian, D.A.: Fuzzy object modeling. In: Proceedings of SPIE Medical Imaging 2011, vol. 7964, pp. 79640B-1–10 (2011)

    Google Scholar 

  11. Nakano, R., Kobashi, S., Kuramoto, K., Wakata, Y., Ando, K., Ishikura, R., Ishikawa, T., Hirota, S., Hata, Y.: Fuzzy object growth model for newborn brain using manifold learning. In: Proceedings of 2014 IEEE International Conference on Fuzzy Systems, pp. 1809–1816 (2014)

    Google Scholar 

  12. Kobashi, S., Nakano, R., Kuramoto, K., Wakata, Y., Ando, K., Ishikura, R., Ishikawa, T., Hirota, S., Hata, Y., Kamiura, N.: Neonatal brain segmentation using 4-D Fuzzy object model. In: Proceedings of International Conference on Informatics, Electronics & Vision (2014)

    Google Scholar 

  13. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  14. Remy, E., Thiel, E.: Computing 3D medial axis for chamfer distances. Lect. Notes Comput. Sci. 1953, 418–430 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Authors would like to express their sincere appreciation to Mr. Ryosuke Nakano, University of Hyogo, JAPAN, who implements the method. This work was supported in part by JSPS Grant-in-Aid for Scientific Research on Innovative Areas (Multidisciplinary Computational Anatomy) JSPS KAKENHI Grant Number 15H01126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syoji Kobashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alam, S.B., Kobashi, S., Udupa, J.K. (2018). Fuzzy Object Growth Model for Neonatal Brain MR Understanding. In: Suzuki, K., Chen, Y. (eds) Artificial Intelligence in Decision Support Systems for Diagnosis in Medical Imaging. Intelligent Systems Reference Library, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-319-68843-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68843-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68842-8

  • Online ISBN: 978-3-319-68843-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics