Skip to main content

Sensorimotor Prediction with Neural Networks on Continuous Spaces

  • Conference paper
  • First Online:
Book cover Artificial Neural Networks and Machine Learning – ICANN 2017 (ICANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10613))

Included in the following conference series:

Abstract

In the context of Developmental Robotics, we propose to learn how the sensations of a robot are modified by its action. Many theories of Artificial Intelligence argue that sensorimotor prediction is a fundamental building block of cognition. In this paper, we learn the sensorimotor prediction on data captured by a mobile robot equipped with distance sensors. We show that Neural Networks can learn the sensorimotor regularities and perform sensorimotor prediction on continuous sensor and motor spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). software available from tensorflow.org

  2. Cangelosi, A., Schlesinger, M.: Developmental Robotics: From Babies to Robots. The MIT Press, Cambridge (2014)

    Google Scholar 

  3. Clark, A.: Whatever next? predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36(3), 181–204 (2013)

    Article  Google Scholar 

  4. Friston, K.: The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11(2), 127–138 (2010)

    Article  Google Scholar 

  5. Ghadirzadeh, A., Btepage, J., Kragic, D., Bjrkman, M.: Self-learning and adaptation in a sensorimotor framework. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 551–558, May 2016

    Google Scholar 

  6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

    Google Scholar 

  7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates, Inc. (2012)

    Google Scholar 

  8. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of deep visuomotor policies. J. Mach. Learn. Res. 17(1), 1334–1373 (2016)

    MATH  MathSciNet  Google Scholar 

  9. Magnenat, S., Rétornaz, P., Bonani, M., Longchamp, V., Mondada, F.: ASEBA: a modular architecture for event-based control of complex robots. IEEE/ASME Trans. Mechatron. 16(2), 321–329 (2011)

    Article  Google Scholar 

  10. Maye, A., Engel, A.K.: Extending sensorimotor contingency theory: prediction, planning, and action generation. Adapt. Behav. 21(6), 423–436 (2013)

    Article  Google Scholar 

  11. Möller, R., Schenck, W.: Bootstrapping cognition from behavior - a computerized thought experiment. Cogn. Sci. 32(3), 504–542 (2008)

    Article  Google Scholar 

  12. O’Regan, J., No, A.: A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24(05), 939–973 (2002)

    Article  Google Scholar 

  13. Riedo, F., Chevalier, M.S.D., Magnenat, S., Mondada, F.: Thymio II, a robot that grows wiser with children. In: 2013 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), pp. 187–193. IEEE (2013)

    Google Scholar 

  14. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  15. Schaal, S.: Dynamic movement primitives - a framework for motor control in humans and humanoid robotics. In: Kimura, H., Tsuchiya, K., Ishiguro, A., Witte, H. (eds.) Adaptive Motion of Animals and Machines. Springer, Tokyo (2006). doi:10.1007/4-431-31381-8_23

    Google Scholar 

  16. Sigaud, O., Droniou, A.: Towards deep developmental learning. IEEE Trans. Cogn. Dev. Syst. 8(2), 99–114 (2016)

    Article  Google Scholar 

  17. Sutton, R.S., Barto, A.G.: Introduction to Reinforcement Learning, 1st edn. MIT Press, Cambridge (1998)

    Google Scholar 

  18. Tani, J.: Model-based learning for mobile robot navigation from the dynamical systems perspective. IEEE Trans. Syst. Man Cybernetics Part B 26(3), 421–436 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Garcia Ortiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ortiz, M.G. (2017). Sensorimotor Prediction with Neural Networks on Continuous Spaces. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10613. Springer, Cham. https://doi.org/10.1007/978-3-319-68600-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68600-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68599-1

  • Online ISBN: 978-3-319-68600-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics