Skip to main content

Neuroimaging in Non-dystrophic Myopathies

  • Reference work entry
  • First Online:
Clinical Neuroradiology

Abstract

This chapter will describe non-dystrophic inherited myopathies and show the interest of clinical neuroradiology approaches in their diagnosis. There is a great clinical and genetic heterogeneity, and diseases are classified into different groups depending mainly on the age of onset (congenital myopathies), region of the body affected (distal myopathies), and the presence of particular structural or ultrastructural markers in the muscle biopsy (myofibrillar myopathies). Radiology, in particular muscle MRI techniques, has become a first-line complementary tool in clinical practice for this group of diseases. For diagnostic purposes, whole-body imaging techniques are preferred when involvement is axial or diffuse, as in most congenital myopathies, because of involvement of the tongue, masticator, neck, or trunk muscles. Patterns limited to lower limb muscles are better known in myofibrillar and distal myopathies. MRI protocols using T1-weighed and STIR sequences, which detect fibroadipose or inflammatory/edema changes, respectively, are widely used to identify abnormalities in muscle signal, volume, or texture. Recognizable profiles have been identified in many of these genetic myopathies. Graphical representations using heatmaps and automated algorithms allow comparing patterns and identifying key features in different myopathies, becoming an important tool to guide genetic diagnosis or to interpret next-generation sequencing results. Classic T1W and STIR protocols are progressively leaving the place to Dixon techniques, which offer not only images with similar qualitative information, useful for diagnosis (pattern recognition), but also provide quantitative data for follow-up (outcome measures). No curative treatments exist for these myopathies yet, but imaging offers a noninvasive non-radiating interesting tool expected to play an important role in future therapeutic trials.

This publication is endorsed by: European Society of Neuroradiology (www.esnr.org).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACTA1:

α (alpha)-1 actin

AD:

Autosomal dominant

AL:

Adductor longus muscle

AM:

Adductor magnus muscle

AR:

Autosomal recessive

BAG3:

BCL2-associated athanogene 3 or Bag3 protein

BF:

Biceps femoris short head

BIN1:

Amphiphysin 2 encoding gene

BL:

Biceps femoris long head

BM:

Bethlem myopathy

CACNA1S gene (protein coding):

Calcium voltage-gated channel subunit alpha1 S

CCD:

Central core disease

CFTD:

Congenital fiber-type disproportion

CK:

Creatine kinase

CM:

Congenital myopathy

CMD:

Congenital muscular dystrophy

CNM:

Centronuclear myopathy

COL6:

Collagen 6

COX:

Cytochrome oxidase

CPEO:

Chronic progressive external ophthalmoplegia

CRYAB:

αB-crystallin

DES:

Desmin

DM:

Dystrophic myopathies, muscular dystrophies

DMD:

Duchenne muscular dystrophy

DMRV:

Distal myopathy with rimmed vacuoles

DNM2:

Dynamin 2

EDMD:

Emery-Dreifuss muscular dystrophy

EM:

Electron microscopy

EMG:

Electromyography

EPL:

Extensor pollicis longus muscle

FHL1:

Four-and-a-half LIM domain 1 protein

FLNC:

Filamin C

FSHD:

Facioscapulohumeral dystrophy

GAA:

Acid α (alpha)-glucosidase

GL:

Gastrocnemius lateral head

GM:

Gastrocnemius medial head

GMa:

Gluteus maximus muscle

GMe:

Gluteus medius muscle

GMm:

Gluteus minimus muscle

GNE:

UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine

GR:

Gracilis muscle

GSDs:

Glycogen storage diseases

H&E:

Hematoxylin and eosin

HIBM:

Hereditary inclusion body myopathy

HMERF:

Hereditary myopathy with early respiratory failure

IDEAL:

Iterative Decomposition of water and fat with Echo Asymmetry and Least-squares

IL:

Iliacus muscle

KSS:

Kearns-Sayre syndrome

LD:

Latissimus dorsi muscle

LGMD:

Limb girdle muscular dystrophy

LPt:

Lateral pterygoid muscle

MELAS:

Mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes

MERFF:

Myoclonic epilepsy with ragged red fibers

MFM:

Myofibrillar myopathy

MH:

Malignant hyperthermia

MmD:

Multi-minicore disease

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

MTM1:

Myotubularin 1 gene

MYH7:

Myosin heavy chain 7, slow/β-cardiac MyHC gene

MYOT:

Myotilin

NB:

Nemaline bodies

NEB:

Nebulin

NM:

Nemaline myopathy

PAM:

Protein aggregate myopathies

RSMD1:

Rigid spine syndrome type 1

RSS:

Rigid spine syndrome

RYR1:

Ryanodine receptor type 1

SA:

Sartorius muscle

SCM:

Sternocleidomastoid muscle

SEPN1:

Selenoprotein 1 gene

SG:

Sarcoglycan

SM:

Semimembranosus muscle

SO:

Soleus

ST:

Semitendinosus muscle

STIR:

Short-tau inversion recovery

T1W:

T1-weighted

T2W:

T2-weighted

TA:

Tibialis anterior muscle

TFL:

Tensor fasciae latae muscle

TP:

Tibialis posterior muscle

TPM2:

Tropomyosin 2

TPM3:

Tropomyosin 3

TSE:

Turbo spin echo

TTN:

Titin

UCMD:

Ullrich type congenital muscular dystrophy

ULN:

Upper limit of normal

VI:

Vastus intermedius muscle

VL:

Vastus lateralis muscle

VM:

Vastus medialis muscle

WBMRI:

Whole-body MRI

WDM:

Welander distal myopathy

XLMTM:

X-linked myotubular myopathy

ZASP:

Z-band alternatively spliced PDZ-motif protein

3T:

3 Tesla

References

  • Astrea G, Schessl J, Clement E, Tosetti M, Mercuri E, Rutherford M, Cioni G, Bönnemann CG, Muntoni F, Battini R. Muscle MRI in FHL1-linked reducing body myopathy. Neuromuscul Disord. 2009;19(10):689–91.

    Article  CAS  Google Scholar 

  • Carlier RY, Laforet P, Wary C, Mompoint D, Laloui K, Pellegrini N, Annane D, Carlier PG, Orlikowski D. Whole-body muscle MRI in 20 patients suffering from late onset Pompe disease: involvement patterns. Neuromuscul Disord. 2011;21(11):791–9.

    Article  Google Scholar 

  • Carlier PG, Azzabou N, de Sousa PL, Hicks A, Boisserie JM, Amadon A, Carlier RY, Wary C, Orlikowski D, Lafôret P. Skeletal muscle quantitative nuclear magnetic resonance imaging follow-up of adult Pompe patients. J Inherit Metab Dis 2015;38(3):565–2.

    Article  Google Scholar 

  • Dabaj I, Carlier RY, Gómez-Andrés D, Abath Neto O, Bertini E, D’Amico A, Fattori F, Péréon Y, Castiglioni C, Rodillo E, Catteruccia M, Guimarães JB, Oliveira ASB, Reed UC, Mesrob L, Lechner D, Boland A, Deleuze JF, Malfatti E, Bonnemann C, Laporte J, Romero N, Felter A, Quijano-Roy S, Moreno CAM, Zanoteli E. Clinical and imaging hallmarks of the MYH7-related myopathy with severe axial involvement. Muscle Nerve. 2018;58:224–34. Apr 6. [Epub ahead of print]

    Article  CAS  Google Scholar 

  • Fischer D, Kley RA, Strach K, Meyer C, Sommer T, Eger K, Rolfs A, Meyer W, Pou A, Pradas J, Heyer CM, Grossmann A, Huebner A, Kress W, Reimann J, Schröder R, Eymard B, Fardeau M, Udd B, Goldfarb L, Vorgerd M, Olivé M. Distinct muscle imaging patterns in myofibrillar myopathies. Neurology. 2008;71(10):758–65.

    Article  CAS  Google Scholar 

  • Gómez-Andrés D, Dabaj I, Mompoint D, Hankiewicz K, Azzi V, Ioos C, Romero NB, Ben Yaou R, Bergounioux J, Bonne G, Richard P, Estournet B, Yves-Carlier R, Quijano-Roy S. Pediatric laminopathies: whole-body magnetic resonance imaging fingerprint and comparison with Sepn1 myopathy. Muscle Nerve. 2016;54(2):192–202.

    Article  Google Scholar 

  • Hankiewicz K, Carlier RY, Lazaro L, Linzoain J, Barnerias C, Gómez-Andrés D, Avila-Smirnow D, Ferreiro A, Estournet B, Guicheney P, Germain DP, Richard P, Bulacio S, Mompoint D, Quijano-Roy S. Whole-body muscle magnetic resonance imaging in SEPN1-related myopathy shows a homogeneous and recognizable pattern. Muscle Nerve. 2015;52(5):728–35.

    Article  CAS  Google Scholar 

  • Klein A, Jungbluth H, Clement E, Lillis S, Abbs S, Munot P, Pane M, Wraige E, Schara U, Straub V, Mercuri E, Muntoni F. Muscle magnetic resonance imaging in congenital myopathies due to ryanodine receptor type 1 gene mutations. Arch Neurol. 2011;68(9):1171–9.

    Article  Google Scholar 

  • Quijano-Roy S, Avila-Smirnow D, Carlier RY, WB-MRI Muscle Study Group. Whole body muscle MRI protocol: pattern recognition in early onset NM disorders. Neuromuscul Disord. 2012;22(Suppl 2):S68–84.

    Article  Google Scholar 

  • Romero NB, Lehtokari VL, Quijano-Roy S, Monnier N, Claeys KG, Carlier RY, Pellegrini N, Orlikowski D, Barois A, Laing NG, Lunardi J, Fardeau M, Pelin K, Wallgren-Pettersson C. Core-rod myopathy caused by mutations in the nebulin gene. Neurology. 2009;73(14):1159–61.

    Article  CAS  Google Scholar 

  • Susman RD, Quijano-Roy S, Yang N, Webster R, Clarke NF, Dowling J, Kennerson M, Nicholson G, Biancalana V, Ilkovski B, Flanigan KM, Arbuckle S, Malladi C, Robinson P, Vucic S, Mayer M, Romero NB, Urtizberea JA, García-Bragado F, Guicheney P, Bitoun M, Carlier RY, North KN. Expanding the clinical, pathological and MRI phenotype of DNM2-related centronuclear myopathy. Neuromuscul Disord. 2010;20(4):229–37.

    Article  Google Scholar 

  • Tasca G, Ricci E, Monforte M, Laschena F, Ottaviani P, Rodolico C, Barca E, Silvestri G, Iannaccone E, Mirabella M, Broccolini A. Muscle imaging findings in GNE myopathy. J Neurol. 2012;259(7):1358.

    Article  Google Scholar 

  • Tordjman M, et al. Muscular MRI-based algorithm to differentiate inherited myopathies presenting with spinal rigidity. Eur Radiol. 2018;28(12):5293–303. (In Press)

    Article  Google Scholar 

Further Reading

  • Batonnet-Pichon S, Behin A, Cabet E, Delort F, Vicart P, Lilienbaum AJ. Myofibrillar myopathies: new perspectives from animal models to potential therapeutic approaches. Neuromuscul Disord. 2017;4(1):1–15.

    Article  Google Scholar 

  • Carlier RY. Whole-body muscle MRI (Imagerie musculaire corps entier) (French). Cahiers de Myologie. 2014;10:22–32.

    Google Scholar 

  • Hackman P, Udd B, Bönnemann CG, Ferreiro A, Titinopathy Database Consortium. 219th ENMC International Workshop Titinopathies International database of titin mutations and phenotypes, Heemskerk, The Netherlands, 29 April–1 May 2016. Neuromuscul Disord. 2017;27(4):396–407.

    Article  Google Scholar 

  • Jungbluth H, Dowling JJ, Ferreiro A, Muntoni F; RYR1 Myopathy Consortium. 217th ENMC International Workshop: RYR1-related myopathies, Naarden, The Netherlands, 29–31 January 2016. Neuromuscul Disord 2016;26(9):624–633.

    Google Scholar 

  • Mathis S, Tazir M, Magy L, Duval F, Le Masson G, Duchesne M, Couratier P, Ghorab K, Solé G, Lacoste I, Goizet C, Vallat JM. History and current difficulties in classifying inherited myopathies and muscular dystrophies. J Neurol Sci. 2018;384:50–4.

    Article  Google Scholar 

  • North KN, Wang CH, Clarke N, Jungbluth H, Vainzof M, Dowling JJ, Amburgey K, Quijano-Roy S, Beggs AH, Sewry C, Laing NG, Bönnemann CG, International Standard of Care Committee for Congenital Myopathies. Approach to the diagnosis of congenital myopathies. Neuromuscul Disord. 2014;24(2):97–116.

    Article  Google Scholar 

  • Olivé M, Odgerel Z, Martínez A, Poza JJ, Bragado FG, Zabalza RJ, Jericó I, Gonzalez-Mera L, Shatunov A, Lee HS, Armstrong J, Maraví E, Arroyo MR, Pascual-Calvet J, Navarro C, Paradas C, Huerta M, Marquez F, Rivas EG, Pou A, Ferrer I, Goldfarb LG. Clinical and myopathological evaluation of early- and late-onset subtypes of myofibrillar myopathy. Neuromuscul Disord. 2011;21(8):533–42.

    Article  Google Scholar 

  • Palmio J, Udd B. Myofibrillar and distal myopathies. Rev Neurol (Paris). 2016;172(10):587–93.

    Article  CAS  Google Scholar 

  • Quijano-Roy S, Avila-Smirnow D, Carlier RY, Bevilacqua JA, Romero NB, Fischer D. In: Wattjes MP, Fischer D, editors. Congenital myopathies. New York: Neuromuscular Imaging (Springer); 2018.

    Google Scholar 

  • Romero NB, Clarke NF. Congenital myopathies. Handb Clin Neurol. 2013;113:1321–36.

    Article  Google Scholar 

  • Tasca G, Udd B. Hereditary myopathy with early respiratory failure (HMERF): still rare, but common enough. Neuromuscul Disord. 2017;12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Quijano-Roy .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Quijano-Roy, S., Carlier, R.Y. (2019). Neuroimaging in Non-dystrophic Myopathies. In: Barkhof, F., Jäger, H., Thurnher, M., Rovira, À. (eds) Clinical Neuroradiology. Springer, Cham. https://doi.org/10.1007/978-3-319-68536-6_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68536-6_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68535-9

  • Online ISBN: 978-3-319-68536-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics