Skip to main content

Exercise and Childhood Obesity

  • Chapter
  • First Online:
Pediatric Obesity

Abstract

While obesity mainly results from an imbalance between energy intake and expenditure, physical activity has to be part of prevention and treatment strategies, especially among children and adolescents. Increasing physical activity level mainly depends on the ability to perform exercise, necessitating an objective and accurate evaluation of physical fitness, both aerobic and anaerobic. While this chapter describes how overall fitness is altered by pediatric obesity, it also provides clinicians and practitioners with accurate direct and indirect methods of evaluation. Physical activity must be seen as more than a means to increase energy expenditure; it also favors particular compensatory responses in terms of both expenditure and intake that seem today necessary to consider in order to improve the efficacy of our interventions, as described in the last part of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mark DB, Lauer MS. Exercise capacity: the prognostic variable that doesn’t get enough respect. Circulation. 2003;108(13):1534–6.

    Article  PubMed  Google Scholar 

  2. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.

    Article  PubMed  Google Scholar 

  3. Eisenmann JC. Aerobic fitness, fatness and the metabolic syndrome in children and adolescents. Acta Paediatr. 2007;96(12):1723–9.

    Article  PubMed  Google Scholar 

  4. Eisenmann JC, DuBose KD, Donnelly JE. Fatness, fitness, and insulin sensitivity among 7- to 9-year-old children. Obesity. 2007;15(8):2135–44.

    Article  PubMed  Google Scholar 

  5. Balke B, Ware R. An experimental study of Air Force personnel. U S Armed Forces Med J. 1959;10:675–88.

    CAS  PubMed  Google Scholar 

  6. Bruce RA, Kusumi F, Hosmer D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am Heart J. 1973;85(4):546–62.

    Article  CAS  PubMed  Google Scholar 

  7. Patterson JA, Naughton J, Pietras RJ, Gunnar RM. Treadmill exercise in assessment of the functional capacity of patients with cardiac disease. Am J Cardiol. 1972;30(7):757–62.

    Article  CAS  PubMed  Google Scholar 

  8. Noonan V, Dean E. Submaximal exercise testing: clinical application and interpretation. Phys Ther. 2000;80(8):782–807.

    CAS  PubMed  Google Scholar 

  9. Rowland T, Bhargava R, Parslow D, Heptulla RA. Cardiac response to progressive cycle exercise in moderately obese adolescent females. J Adolesc Health. 2003;32(6):422–7.

    Article  PubMed  Google Scholar 

  10. Bitar A, Vermorel M, Fellmann N, Coudert J. Twenty-four-hour energy expenditure and its components in prepubertal children as determined by whole-body indirect calorimetry and compared with young adults. Am J Clin Nutr. 1995;62(2):308–15.

    Article  CAS  PubMed  Google Scholar 

  11. Watanabe K, Nakadomo F, Maeda K. Relationship between body composition and cardiorespiratory fitness in Japanese junior high school boys and girls. Ann Physiol Anthropol. 1994;13(4):167–74.

    Article  CAS  PubMed  Google Scholar 

  12. Lorenzo S, Babb TG. Quantification of cardiorespiratory fitness in healthy nonobese and obese men and women. Chest. 2012;141(4):1031–9.

    Article  PubMed  Google Scholar 

  13. Goran M, Fields DA, Hunter GR, Herd SL, Weinsier RL. Total body fat does not influence maximal aerobic capacity. Int J Obes Relat Metab Disord. 2000;24(7):841–8.

    Article  CAS  PubMed  Google Scholar 

  14. Hansen D, Marinus N, Remans M, Courtois I, Cools F, Calsius J, et al. Exercise tolerance in obese vs. lean adolescents: a systematic review and meta-analysis. Obes Rev. 2014;15(11):894–904.

    Article  CAS  PubMed  Google Scholar 

  15. Belanger K, Breithaupt P, Ferraro ZM, Barrowman N, Rutherford J, Hadjiyannakis S, et al. Do obese children perceive submaximal and maximal exertion differently? Clin Med Insights Pediatr. 2013;7:35–40.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Marinov B, Kostianev S, Turnovska T. Ventilatory efficiency and rate of perceived exertion in obese and non-obese children performing standardized exercise. Clin Physiol Funct Imaging. 2002;22(4):254–60.

    Article  CAS  PubMed  Google Scholar 

  17. Wagner PD. New ideas on limitations to VO2max. Exerc Sport Sci Rev. 2000;28(1):10–4.

    CAS  PubMed  Google Scholar 

  18. Thivel D, Isacco L, O’Malley G, Duche P. Pediatric obesity and perceived exertion: difference between weight-bearing and non-weight-bearing exercises performed at different intensities. J Sports Sci. 2016;34(5):389–94.

    Article  CAS  PubMed  Google Scholar 

  19. Vella CA, Ontiveros D, Zubia RY. Cardiac function and arteriovenous oxygen difference during exercise in obese adults. Eur J Appl Physiol. 2011;111(6):915–23.

    Article  PubMed  Google Scholar 

  20. Fleischman A, Kron M, Systrom DM, Hrovat M, Grinspoon SK. Mitochondrial function and insulin resistance in overweight and normal-weight children. J Clin Endocrinol Metab. 2009;94(12):4923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Slattery MJ, Bredella MA, Thakur H, Torriani M, Misra M. Insulin resistance and impaired mitochondrial function in obese adolescent girls. Metab Syndr Relat Disord. 2014;12(1):56–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schuster I, Karpoff L, Perez-Martin A, Oudot C, Startun A, Rubini M, et al. Cardiac function during exercise in obese prepubertal boys: effect of degree of obesity. Obesity. 2009;17(10):1878–83.

    Article  PubMed  Google Scholar 

  23. Labombarda F, Zangl E, Dugue AE, Bougle D, Pellissier A, Ribault V, et al. Alterations of left ventricular myocardial strain in obese children. Eur Heart J Cardiovasc Imaging. 2013;14(7):668–76.

    Article  PubMed  Google Scholar 

  24. Ingul CB, Tjonna AE, Stolen TO, Stoylen A, Wisloff U. Impaired cardiac function among obese adolescents: effect of aerobic interval training. Arch Pediatr Adolesc Med. 2010;164(9):852–9.

    Article  PubMed  Google Scholar 

  25. Bosco C, Rusko H, Hirvonen J. The effect of extra-load conditioning on muscle performance in athletes. Med Sci Sports Exerc. 1986;18(4):415–9.

    Article  CAS  PubMed  Google Scholar 

  26. Garcia-Vicencio S, Coudeyre E, Kluka V, Cardenoux C, Jegu AG, Fourot AV, et al. The bigger, the stronger? Insights from muscle architecture and nervous characteristics in obese adolescent girls. Int J Obes (Lond). 2016;40(2):245–51.

    Article  CAS  Google Scholar 

  27. Blimkie CJ, Ebbesen B, MacDougall D, Bar-Or O, Sale D. Voluntary and electrically evoked strength characteristics of obese and nonobese preadolescent boys. Hum Biol. 1989;61(4):515–32.

    CAS  PubMed  Google Scholar 

  28. Garcia-Vicencio S, Martin V, Kluka V, Cardenoux C, Jegu AG, Fourot AV, et al. Obesity-related differences in neuromuscular fatigue in adolescent girls. Eur J Appl Physiol. 2015;115(11):2421–32.

    Article  PubMed  Google Scholar 

  29. Maffiuletti NA, Jubeau M, Agosti F, De Col A, Sartorio A. Quadriceps muscle function characteristics in severely obese and nonobese adolescents. Eur J Appl Physiol. 2008;103(4):481–4.

    Article  PubMed  Google Scholar 

  30. Abdelmoula A, Martin V, Bouchant A, Walrand S, Lavet C, Taillardat M, et al. Knee extension strength in obese and nonobese male adolescents. Appl Physiol Nutr Metab. 2012;37(2):269–75.

    Article  PubMed  Google Scholar 

  31. Blimkie CJ, Sale DG, Bar-Or O. Voluntary strength, evoked twitch contractile properties and motor unit activation of knee extensors in obese and non-obese adolescent males. Eur J Appl Physiol Occup Physiol. 1990;61(3–4):313–8.

    Article  CAS  PubMed  Google Scholar 

  32. Lazzer S, Pozzo R, Rejc E, Antonutto G, Francescato MP. Maximal explosive muscle power in obese and non-obese prepubertal children. Clin Physiol Funct Imaging. 2009;29(3):224–8.

    Article  PubMed  Google Scholar 

  33. Aucouturier J, Lazaar N, Dore E, Meyer M, Ratel S, Duche P. Cycling peak power in obese and lean 6- to 8-year-old girls and boys. Appl Physiol Nutr Metab. 2007;32(3):367–71.

    Article  PubMed  Google Scholar 

  34. Duche P, Ducher G, Lazzer S, Dore E, Tailhardat M, Bedu M. Peak power in obese and nonobese adolescents: effects of gender and braking force. Med Sci Sports Exerc. 2002;34(12):2072–8.

    Article  PubMed  Google Scholar 

  35. Zurlo F, Ferraro RT, Fontvielle AM, Rising R, Bogardus C, Ravussin E. Spontaneous physical activity and obesity: cross-sectional and longitudinal studies in Pima Indians. Am J Physiol. 1992;263(2 Pt 1):E296–300.

    CAS  PubMed  Google Scholar 

  36. Maffeis C, Tato L. What role do physical activity and sedentary life style play in development and maintenance of excess pounds in the child? Arch Pediatr. 1998;5(11):1191–6.

    Article  CAS  PubMed  Google Scholar 

  37. Lightfoot JT. Current understanding of the genetic basis for physical activity. J Nutr. 2011;141(3):526–30.

    Article  CAS  PubMed  Google Scholar 

  38. Stubbe JH, Boomsma DI, Vink JM, Cornes BK, Martin NG, Skytthe A, et al. Genetic influences on exercise participation in 37,051 twin pairs from seven countries. PLoS One. 2006;1:e22.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ruiz JR, Labayen I, Ortega FB, Legry V, Moreno LA, Dallongeville J, et al. Attenuation of the effect of the FTO rs9939609 polymorphism on total and central body fat by physical activity in adolescents: the HELENA study. Arch Pediatr Adolesc Med. 2010;164(4):328–33.

    Article  PubMed  Google Scholar 

  40. Schutz Y, Weinsier RL, Hunter GR. Assessment of free-living physical activity in humans: an overview of currently available and proposed new measures. Obes Res. 2001;9(6):368–79.

    Article  CAS  PubMed  Google Scholar 

  41. McMurray RG, Ward DS, Elder JP, Lytle LA, Strikmiller PK, Baggett CD, et al. Do overweight girls overreport physical activity? Am J Health Behav. 2008;32(5):538–46.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Steele RM, van Sluijs EM, Cassidy A, Griffin SJ, Ekelund U. Targeting sedentary time or moderate- and vigorous-intensity activity: independent relations with adiposity in a population-based sample of 10-y-old British children. Am J Clin Nutr. 2009;90(5):1185–92.

    Article  CAS  PubMed  Google Scholar 

  43. Maturo CC, Cunningham SA. Influence of friends on children’s physical activity: a review. Am J Public Health. 2013;103(7):e23–38.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Marks J, de la Haye K, Barnett LM, Allender S. Friendship network characteristics are associated with physical activity and sedentary behavior in early adolescence. PLoS One. 2015;10(12):e0145344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Mendonca G, Cheng LA, Melo EN, de Farias Junior JC. Physical activity and social support in adolescents: a systematic review. Health Educ Res. 2014;29(5):822–39.

    Article  PubMed  Google Scholar 

  46. Sawka KJ, McCormack GR, Nettel-Aguirre A, Hawe P, Doyle-Baker PK. Friendship networks and physical activity and sedentary behavior among youth: a systematized review. Int J Behav Nutr Phys Act. 2013;10(1):130.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Brockman R, Fox KR, Fox KR. Children’s active play: self-reported motivators, barriers and facilitators. BMC Public Health. 2011;11:461.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Harrison S, Rowlinson M, Hill AJ. “No fat friend of mine”: young children’s responses to overweight and disability. Body Image. 2016;18:65–73.

    Article  PubMed  Google Scholar 

  49. van Geel M, Vedder P, Tanilon J. Are overweight and obese youths more often bullied by their peers? A meta-analysis on the correlation between weight status and bullying. Int J Obes (Lond). 2014;38(10):1263–7.

    Article  Google Scholar 

  50. Gray WN, Janicke DM, Ingerski LM, Silverstein JH, Silverstein JH. The impact of peer victimization, parent distress and child depression on barrier formation and physical activity in overweight youth. J Dev Behav Pediatr. 2008;29(1):26–33.

    PubMed  Google Scholar 

  51. van Stralen MM, Yildirim M, te Velde SJ, Brug J, Fau BJ, van Mechelen W, Chinapaw MJM, Chinapaw MJ. What works in school-based energy balance behaviour interventions and what does not? A systematic review of mediating mechanisms. Int J Obes (Lond). 2011;35(10):1251–65.

    Article  Google Scholar 

  52. Lubans DR, Foster C, Biddle SJH, Biddle SJ. A review of mediators of behavior in interventions to promote physical activity among children and adolescents. Prev Med. 2008;47(5):463–70.

    Article  PubMed  Google Scholar 

  53. Thivel D, O’Malley G. Physical activity and play in children who are obese. In: Frelut ML, editor. The ECOG’s eBook on child and adolescent obesity. Bruxelles, Belgium: European Child Obesity Group; 2015.

    Google Scholar 

  54. Okely AD SJ, Vella SA, Cliff D, Timperio A, Tremblay M, Trost SG, Shilton T, Hinkley T, Ridgers N, Phillipson L, Hesketh K, Parrish A-M, Janssen X, Brown M, Emmel J, Marino N. A systematic review to update the Australian physical activity guidelines for children and young people. Australian Government. Department of Health. 2012.

    Google Scholar 

  55. Bellows LL, Davies PL, Anderson J, Kennedy C, et al. Am J Occup Ther. 2013;67(1):28–36.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cliff DP, Okely AD, Morgan PJ, Jones RA, Steele JR, Baur LA. Proficiency deficiency: mastery of fundamental movement skills and skill components in overweight and obese children. Obesity. 2012;20(5):1024–33.

    Article  PubMed  Google Scholar 

  57. Balas-Nakash M, Benitez-Arciniega A, Perichart-Perera O, Valdes-Ramos R, Vadillo-Ortega F. The effect of exercise on cardiovascular risk markers in Mexican school-aged children: comparison between two structured group routines. Salud Publica Mex. 2010;52(5):398–405.

    Article  PubMed  Google Scholar 

  58. Kelley GA, Kelley KS. Effects of aerobic exercise on non-high-density lipoprotein cholesterol in children and adolescents: a meta-analysis of randomized controlled trials. Prog Cardiovasc Nurs. 2008;23(3):128–32.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Daniels SR, Arnett DK, Eckel RH, Gidding SS, Hayman LL, Kumanyika S, Robinson TN, et al. Overweight in children and adolescents: pathophysiology, consequences, prevention, and treatment. Circulation. 2005;111(15):1999–2012.

    Article  PubMed  Google Scholar 

  60. Lazzer S, Busti C, Agosti F, De Col A, Pozzo R, Sartorio A. Optimizing fat oxidation through exercise in severely obese Caucasian adolescents. Clin Endocrinol (Oxf). 2007;67(4):582–8.

    CAS  Google Scholar 

  61. Ben Ounis O, Elloumi M, Zouhal H, Makni E, Lac G, Tabka Z, Amri M, et al. Effect of an individualized physical training program on resting cortisol and growth hormone levels and fat oxidation during exercise in obese children. Ann Endocrinol (Paris). 2011;72(1):34–41.

    Article  CAS  Google Scholar 

  62. Brandou F, Dumortier M, Garandeau P, Mercier J, Brun JF. Effects of a two-month rehabilitation program on substrate utilization during exercise in obese adolescents. Diabetes Metab. 2003;29(1):20–7.

    Article  CAS  PubMed  Google Scholar 

  63. Thivel D, O’Malley G. Pediatric obesity: is there room for active video games in prevention or management? Pediatr Phys Ther. 2016;28(4):368–70.

    Article  PubMed  Google Scholar 

  64. Faigenbaum AD, Westcott W, Loud RL, Long C. The effects of different resistance training protocols on muscular strength and endurance development in children. Pediatrics. 1999;104(1):e5.

    Article  CAS  PubMed  Google Scholar 

  65. Thivel D, Ring-Dimitriou S, Weghuber D, Frelut ML, O’Malley G. Muscle strength and fitness in pediatric obesity: a systematic review from the European Childhood Obesity Group. Obes Facts. 2016;9(1):52–63.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sothern MS, Loftin J, Udall JN, Suskind RM, Ewing TL, Tang SC, Blecker U, et al. Safety, feasibility, and efficacy of a resistance training program in preadolescent obese children. Am J Med Sci. 2000;319(6):370–5.

    Article  CAS  PubMed  Google Scholar 

  67. Sothern MS, Loftin J, Udall JN, Suskind RM, Ewing TL, Tang SC, Blecker U, et al. Inclusion of resistance exercise in a multidisciplinary outpatient treatment program for preadolescent obese children. South Med J. 1999;92(6):585–92.

    Article  CAS  PubMed  Google Scholar 

  68. Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ. Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy x-ray absorptiometry study. J Pediatr. 2001;139(4):509–15.

    Article  CAS  PubMed  Google Scholar 

  69. Goulding A, Taylor RW, Jones IE, McAuley KA, Manning PJ, Williams SM. Overweight and obese children have low bone mass and area for their weight. Int J Obes Relat Metab Disord. 2000;24(5):627–32.

    Article  CAS  PubMed  Google Scholar 

  70. Nogueira RC, Weeks B, Beck BR. Exercise to improve pediatric bone and fat: a systematic review and meta-analysis. Med Sci Sports Exerc. 2014;46(3):610–21.

    Article  PubMed  Google Scholar 

  71. Corte de Araujo AC, Roschel H, Picanco AR, do Prado DM, Villares SM, de Sa Pinto AL, et al. Similar health benefits of endurance and high-intensity interval training in obese children. PLoS One. 2012;7(8):e42747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Garcia-Hermoso A, Saavedra JM, Escalante Y. Effects of exercise on resting blood pressure in obese children: a meta-analysis of randomized controlled trials. Obes Rev. 2013;14(11):919–28.

    Article  CAS  PubMed  Google Scholar 

  73. Petty KH, Davis CL, Tkacz J, Young-Hyman D, Waller JL. Exercise effects on depressive symptoms and self-worth in overweight children: a randomized controlled trial. J Pediatr Psychol. 2009;34(9):929–39.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tkacz J, Young-Hyman D, Boyle CA, Davis CL. Aerobic exercise program reduces anger expression among overweight children. Pediatr Exerc Sci. 2008;20(4):390–401.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Fogelholm M, Kukkonen-Harjula K. Does physical activity prevent weight gain--a systematic review. Obes Rev. 2000;1(2):95–111.

    Article  CAS  PubMed  Google Scholar 

  76. Saris WH, Blair SN, van Baak MA, Eaton SB, Davies PS, Di Pietro L, et al. How much physical activity is enough to prevent unhealthy weight gain? Outcome of the IASO 1st stock conference and consensus statement. Obes Rev. 2003;4(2):101–14.

    Article  CAS  PubMed  Google Scholar 

  77. Chaput JP, Sharma AM. Is physical activity in weight management more about ‘calories in’ than ‘calories out’? Br J Nutr. 2011;106(11):1768–9.

    Article  CAS  PubMed  Google Scholar 

  78. Thivel D, Saunders TJ, Chaput JP. Physical activity in children and youth may have greater impact on energy intake than energy expenditure. J Nutr Educ Behav. 2013;45(1):e1.

    Article  PubMed  Google Scholar 

  79. Thivel D, Duche P, Morio B. Energy balance in youth: an ‘inter-dynamic’ concept? Br J Nutr. 2013;109(3):581–2.

    Article  CAS  PubMed  Google Scholar 

  80. Bilski J, Teleglow A, Zahradnik-Bilska J, Dembinski A, Warzecha Z. Effects of exercise on appetite and food intake regulation. Med Sport. 2009;13:82–94.

    Article  Google Scholar 

  81. Moore MS, Dodd CJ, Welsman JR, Armstrong N. Short-term appetite and energy intake following imposed exercise in 9- to 10-year-old girls. Appetite. 2004;43(2):127–34.

    Article  PubMed  Google Scholar 

  82. Bozinovski NC, Bellissimo N, Thomas SG, Pencharz PB, Goode RC, Anderson GH. The effect of duration of exercise at the ventilation threshold on subjective appetite and short-term food intake in 9 to 14 year old boys and girls. Int J Behav Nutr Phys Act. 2009;6:66.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nemet D, Arieli R, Meckel Y, Eliakim A. Immediate post-exercise energy intake and macronutrient preferences in normal weight and overweight pre-pubertal children. Int J Pediatr Obes. 2010;5(3):221–9.

    Article  PubMed  Google Scholar 

  84. Thivel D, Isacco L, Rousset S, Boirie Y, Morio B, Duché P. Intensive exercise: a remedy for childhood obesity? Physiol Behav. 2011;102(2):132–6.

    Article  CAS  PubMed  Google Scholar 

  85. Thivel D, Isacco L, Montaurier C, Boirie Y, Duche P, Morio B. The 24-h energy intake of obese adolescents is spontaneously reduced after intensive exercise: a randomized controlled trial in calorimetric chambers. PLoS One. 2012;7(1):e29840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Thivel D, Metz L, Julien A, Morio B, Duche P. Obese but not lean adolescents spontaneously decrease energy intake after intensive exercise. Physiol Behav. 2014;123:41–6.

    Article  CAS  PubMed  Google Scholar 

  87. Thivel D, Rumbold PL, King NA, Pereira B, Blundell JE, Mathieu ME. Acute post-exercise energy and macronutrient intake in lean and obese youth: a systematic review and meta-analysis. Int J Obes (Lond). 2016;40(10):1469–79.

    Article  CAS  Google Scholar 

  88. Stensel D. Exercise, appetite and appetite-regulating hormones: implications for food intake and weight control. Ann Nutr Metab. 2010;57(Suppl 2):36–42.

    Article  CAS  PubMed  Google Scholar 

  89. Ueda SY, Yoshikawa T, Katsura Y, Usui T, Fujimoto S. Comparable effects of moderate intensity exercise on changes in anorectic gut hormone levels and energy intake to high intensity exercise. J Endocrinol. 2009;203(3):357–64.

    Article  CAS  PubMed  Google Scholar 

  90. Ueda SY, Yoshikawa T, Katsura Y, Usui T, Nakao H, Fujimoto S. Changes in gut hormone levels and negative energy balance during aerobic exercise in obese young males. J Endocrinol. 2009;201(1):151–9.

    Article  CAS  PubMed  Google Scholar 

  91. Sauseng W, Nagel B, Gamillscheg A, Aigner R, Borkenstein M, Zotter H. Acylated ghrelin increases after controlled short-time exercise in school-aged children. Scand J Med Sci Sports. 2011;21(6):e100–5.

    Article  CAS  PubMed  Google Scholar 

  92. Prado WL, Balagopal PB, Lofrano-Prado MC, Oyama LM, Tenorio TR, Botero JP, et al. Effect of aerobic exercise on hunger feelings and satiety regulating hormones in obese teenage girls. Pediatr Exerc Sci. 2015;26(4):463–9.

    Article  Google Scholar 

  93. Blundell JE, Gibbons C, Caudwell P, Finlayson G, Hopkins M. Appetite control and energy balance: impact of exercise. Obes Rev. 2015;16(Suppl 1):67–76.

    Article  PubMed  Google Scholar 

  94. Evero N, Hackett LC, Clark RD, Phelan S, Hagobian TA. Aerobic exercise reduces neuronal responses in food reward brain regions. J Appl Physiol (1985). 2012;112(9):1612–9.

    Article  Google Scholar 

  95. Hanlon B, Larson MJ, Bailey BW, LeCheminant JD. Neural response to pictures of food after exercise in normal-weight and obese women. Med Sci Sports Exerc. 2012;44(10):1864–70.

    Article  PubMed  Google Scholar 

  96. Fearnbach SN, Silvert L, Keller KL, Genin PM, Morio B, Pereira B, et al. Reduced neural response to food cues following exercise is accompanied by decreased energy intake in obese adolescents. Int J Obes (Lond). 2016;40(1):77–83.

    Article  CAS  Google Scholar 

  97. King NA, Hester J, Gately PJ. The effect of a medium-term activity- and diet-induced energy deficit on subjective appetite sensations in obese children. Int J Obes (Lond). 2007;31(2):334–9.

    Article  CAS  Google Scholar 

  98. Gueugnon C, Mougin F, Nguyen NU, Bouhaddi M, Nicolet-Guenat M, Dumoulin G. Ghrelin and PYY levels in adolescents with severe obesity: effects of weight loss induced by long-term exercise training and modified food habits. Eur J Appl Physiol. 2012;112(5):1797–805.

    Article  CAS  PubMed  Google Scholar 

  99. Jones TE, Basilio JL, Brophy PM, McCammon MR, Hickner RC. Long-term exercise training in overweight adolescents improves plasma peptide YY and resistin. Obesity (Silver Spring). 2009;17(6):1189–95.

    CAS  Google Scholar 

  100. Thivel D, Chaput JP, Adamo KB, Goldfield GS. Is energy intake altered by a 10-week aerobic exercise intervention in obese adolescents? Physiol Behav. 2014;135:130–4.

    Article  CAS  PubMed  Google Scholar 

  101. Carnier J, de Mello MT, Ackel DC, Corgosinho FC, Campos RM, Sanches Pde L, et al. Aerobic training (AT) is more effective than aerobic plus resistance training (AT+RT) to improve anorexigenic/orexigenic factors in obese adolescents. Appetite. 2013;69:168–73.

    Article  PubMed  Google Scholar 

  102. Prado WL, Lofrano-Prado MC, Oyama LM, Cardel M, Gomes PP, Andrade ML, et al. Effect of a 12-week low vs. high intensity aerobic exercise training on appetite-regulating hormones in obese adolescents: a randomized exercise intervention study. Pediatr Exerc Sci. 2015;27(4):510–7.

    Article  PubMed  Google Scholar 

  103. Schwartz C, King NA, Perreira B, Blundell JE, Thivel D. A systematic review and meta-analysis of energy and macronutrient intake responses to physical activity interventions in children and adolescents with obesity. Pediatr Obes. 2017;12(3):179–94.

    Article  CAS  PubMed  Google Scholar 

  104. Schoeller DA, Thomas D, Archer E, Heymsfield SB, Blair SN, Goran MI, et al. Self-report-based estimates of energy intake offer an inadequate basis for scientific conclusions. Am J Clin Nutr. 2013;97(6):1413–5.

    Article  CAS  PubMed  Google Scholar 

  105. Rowland TW. The biological basis of physical activity. Med Sci Sports Exerc. 1998;30(3):392–9.

    Article  CAS  PubMed  Google Scholar 

  106. Fremeaux AE, Mallam KM, Metcalf BS, Hosking J, Voss LD, Wilkin TJ. The impact of school-time activity on total physical activity: the activitystat hypothesis (EarlyBird 46). Int J Obes (Lond). 2012;35(10):1277–83.

    Article  Google Scholar 

  107. Mallam KM, Metcalf BS, Kirkby J, Voss LD, Wilkin TJ. Contribution of timetabled physical education to total physical activity in primary school children: cross sectional study. BMJ. 2003;327(7415):592–3.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Marcus C, Nyberg G, Nordenfelt A, Karpmyr M, Kowalski J, Ekelund U. A 4-year, cluster-randomized, controlled childhood obesity prevention study: STOPP. Int J Obes (Lond). 2009;33(4):408–17.

    Article  CAS  Google Scholar 

  109. Kriemler S, Zahner L, Schindler C, Meyer U, Hartmann T, Hebestreit H, et al. Effect of school based physical activity programme (KISS) on fitness and adiposity in primary schoolchildren: cluster randomised controlled trial. BMJ. 2010;340:c785.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wilkin T. Reply to Wardle J et al. School-based physical activity and changes in adiposity. Int J Obes (Lond). 2008;32(3):577. author reply 8

    Article  CAS  Google Scholar 

  111. Baggett CD, Stevens J, Catellier DJ, Evenson KR, McMurray RG, He K, et al. Compensation or displacement of physical activity in middle-school girls: the trial of activity for adolescent girls. Int J Obes (Lond). 2010;34(7):1193–9.

    Article  CAS  Google Scholar 

  112. Dale D, Corbin CB, Dale KS. Restricting opportunities to be active during school time: do children compensate by increasing physical activity levels after school? Res Q Exerc Sport. 2000;71(3):240–8.

    Article  CAS  PubMed  Google Scholar 

  113. Goodman A, Mackett RL, Paskins J. Activity compensation and activity synergy in British 8-13 year olds. Prev Med. 2011;53(4–5):293–8.

    Article  PubMed  Google Scholar 

  114. Eisenmann JC, Wickel EE. The biological basis of physical activity in children: revisited. Pediatr Exerc Sci. 2009;21(3):257–72.

    Article  PubMed  Google Scholar 

  115. Rowlands AV. Methodological approaches for investigating the biological basis for physical activity in children. Pediatr Exerc Sci. 2009;21(3):273–8.

    Article  PubMed  Google Scholar 

  116. Wang X, Nicklas BJ. Acute impact of moderate-intensity and vigorous-intensity exercise bouts on daily physical activity energy expenditure in postmenopausal women. J Obes. 2011;2011. pii: 342431.

    Google Scholar 

  117. Kriemler S, Hebestreit H, Mikami S, Bar-Or T, Ayub BV, Bar-Or O. Impact of a single exercise bout on energy expenditure and spontaneous physical activity of obese boys. Pediatr Res. 1999;46(1):40–4.

    Article  CAS  PubMed  Google Scholar 

  118. Thivel D, Aucouturier J, Metz L, Morio B, Duche P. Is there spontaneous energy expenditure compensation in response to intensive exercise in obese youth? Pediatr Obes. 2014;9(2):147–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Thivel PhD, HDR .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Thivel, D., O’Malley, G., Aucouturier, J. (2018). Exercise and Childhood Obesity. In: Freemark, M. (eds) Pediatric Obesity. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-68192-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68192-4_33

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-68191-7

  • Online ISBN: 978-3-319-68192-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics