Skip to main content

Optimization of Manufacturing Tolerances on Sheet Metal Components in the Development Process

  • Conference paper
  • First Online:
Advances in Structural and Multidisciplinary Optimization (WCSMO 2017)

Included in the following conference series:

  • 6477 Accesses

Abstract

In an increasingly challenging environment of growing competition and stricter legal regulations, the concept of lightweight design gets more and more important for the automotive industry. Usually, the goals of lightweight tend to conflict with the robustness of the designs. The scattering of the geometry within the manufacturing tolerance leads to a divergence between the test bench results and the prediction from simulation. For an optimized lightweight design, this deviation will often lead to a violation of the requirements. In this case, the part has to be re-designed to improve its robustness, causing an additional time expense, higher costs and a higher weight.

This paper presents a new way to answer the conflict of objectives between lightweight and robustness. By the integration of manufacturing tolerances in an early stage of the product design, the robustness of a part can be improved without increasing its weight. A parametric CAE model is used to represent all deviations of the geometry and material properties within the tolerance range. Additionally, an analytic expression of the relevant simulation results is built. These tools are not only used to predict exactly the scattering of the test bench result, but also allow optimizing the tolerance ranges in order to obtain a 100% satisfaction of the requirements in every tolerated configuration.

The optimized tolerance ranges make it possible transferring the weight advantage generated in the structural optimization into the design of prototypes. Through a better prediction of the test bench results in the simulation, unnecessary development loops can be avoided. The presented procedure is the first one that integrates manufacturing tolerances within the simulation with the objective of optimizing the tolerance ranges beyond a simple parameter optimization. Thereby, new weight potentials are allowed, and the development process can be substantially shortened.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, Z.: Robust design optimization: ensuring robustness against uncertainty in structural design. All issertations, Paper 1157 (2013)

    Google Scholar 

  2. Jourdan, F.A.: Computerunterstützte Toleranzfestlegung zur Qualitätssicherung und Optimierung der Fertigungskosten. Dissertation, ETH Zürich (2003)

    Google Scholar 

  3. Valliappan, S., Chee, C.K.: Aging degradation of mechanical structures. J. Mech. Mater. Struct. 3, 10 (2008)

    Article  Google Scholar 

  4. Kang, Z.: Robust design optimization of structures under uncertainties. Dissertation, Universität Stuttgart (2005)

    Google Scholar 

  5. Voß, R.: Toleranzanalyse komplexer Gussbauteile mittels stochastischer Simulation der Fertigungseinflüsse. Dissertation, Universität Erlangen-Nürnberg (2011)

    Google Scholar 

  6. Stark, R.: Entwicklung eines mathematischen Toleranzenmodells zur Integration in (3D-) CAD-Systeme. Schriftenreihe Produktionstechnik, Universität des Saarlandes (1994)

    Google Scholar 

  7. Jörgensen-Rechter, S.: Rechnergestützte Analyse von Mass-, Form- und Lageabweichungen—ein Werkzeug zur Bauteiltolerierung. Fortschritt-Berichte VDI Nr. 117 (1994)

    Google Scholar 

  8. Bohn, M.: Toleranzmanagement im Entwicklungsprozeß - Reduzierung der Auswirkungen von Toleranzen auf Zusammenbauten der Automobil-Karosserien. Dissertation, Universität Karlsruhe (1998)

    Google Scholar 

  9. Taguchi, G., Chowdhury, S., Taguchi, S.: Robust Engineering. McGraw-Hill, New York (2000)

    MATH  Google Scholar 

  10. Phadke, M.S.: Quality Engineering using Robust Design. Prentice Hall, Upper Saddle River (1989)

    Google Scholar 

  11. Dimitriou, P., Peng, Z., Lemon, D., Gao, B.: Diesel Engine Combustion Optimization for Bio-Diesel Blends Using Taguchi and ANOVA Statistical Methods, SAE Technical Paper 2013-24-0011 (2013)

    Google Scholar 

  12. Schuëller, G.I., Jensen, H.A.: Computational methods in optimization considering uncertainties – an overview. Comput. Methods Appl. Mech. Eng. 198, 2–13 (2008)

    Article  MATH  Google Scholar 

  13. Ben-Tal, A., Nemirovski, A.: Robust optimization - methodology and applications. Math. Program. Ser. B 92, 453–480 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Beyer, H.G., Sendhoff, B.: Robust optimization - a comprehensive survey. Comput. Methods Appl. Mech. Eng. 196, 3190–3218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Park, G.J., Lee, T.H., Lee, K.H., Hwang, K.H.: Robust design: an overview. Am. Inst. Aeronaut. Astronaut. 44, 181–191 (2006)

    Article  Google Scholar 

  16. Trosset, M.W.: Taguchi and Robust Design, Technical report 96-31, Department of Computational and Applied Mathematics, Rice University (1997)

    Google Scholar 

  17. Hayer, C., Fiebig, S., Vietor, T., Sellschopp, J.: Robustheitsoptimierung innerhalb des Entwicklungs-prozesses durch Integration von Fertigungstoleranzen in die Simulation, 28. VDI-Fachtagung Technische Zuverlässigkeit (2017, to be published)

    Google Scholar 

  18. Wahid, Z., Nadir, N.: Improvement of one tactor at a time through design of experiments. World Appl. Sci. J. 21, 56–61 (2013). Mathematical Applications Engineering

    Google Scholar 

  19. Czado, C., Schmidt, T.: Mathematische Statistik. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  20. Siebertz, K., van Debber, D., Hochkirchen, T.: Statistische Versuchsplanung – Design of Experiments (DoE). Springer, Heidelberg (2010)

    Book  Google Scholar 

  21. Janon, A.: Analyse de sensibilité et réduction de dimension - Application à l’océanographie. Dissertation. Université de Grenoble (2006)

    Google Scholar 

  22. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis. The Primer. Wiley, Chichester (2008)

    MATH  Google Scholar 

  23. Viana, F.A.C.: Things you wanted to know about the Latin hypercube design and were afraid to ask. In: 10th World Congress on Structural and Multidisciplinary Optimization (2013)

    Google Scholar 

  24. Damblin, G., Couplet, M., Iooss, B.: Numerical studies of space-filling designs: optimization of Latin Hypercube Samples and subprojection properties. J. Simul. 7(4), 276–289 (2013)

    Article  Google Scholar 

  25. Ranjan, P., Spencer, N.: Space-filling Latin hypercube designs based on randomization restrictions in factorial experiments. Stat. Probab. Lett. 94, 239–247 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lazić, L.: Use of orthogonal arrays and design of experiments via taguchi methods in software testing. In: 18th International Conference on APPLIED MATHEMATICS (AMATH 2013), Budapest, Hungary (2013)

    Google Scholar 

  27. Kewlani, G., Crawford, J., Iagnemma, K.: A polynomial chaos approach to the analysis of vehicle dynamics under uncertainty. Veh. Syst. Dyn. 50(5) (2012)

    Google Scholar 

  28. Kalla, S.: Use of orthogonal arrays, quasi-monte carlo sampling, and kriging response models for reservoir simulation with many varying factors. Regional Engineering College Master Thesis, Warangal (2002)

    Google Scholar 

  29. Zein, S., Colson, B., Glineur, F.: An efficient sampling method for regression-based polynomial chaos expansion. Commun. Comput. Phys. 13, 1173–1188 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, London (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hayer, C., Fiebig, S., Vietor, T., Sellschopp, J. (2018). Optimization of Manufacturing Tolerances on Sheet Metal Components in the Development Process. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, KU., Maute, K. (eds) Advances in Structural and Multidisciplinary Optimization. WCSMO 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-67988-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67988-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67987-7

  • Online ISBN: 978-3-319-67988-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics