Skip to main content

Topology Optimization of Thin-Walled Structures Under Static/Crash Loading Case in the Hybrid Cellular Automaton Framework

  • Conference paper
  • First Online:
Advances in Structural and Multidisciplinary Optimization (WCSMO 2017)

Included in the following conference series:

Abstract

Crashworthiness design and optimization is of great importance in the automotive industry. However, due to the high computational cost and numerical noise, crashworthiness topology optimization is not studied so intensively. In this paper, a relatively new method, the Hybrid Cellular Automata for Thin-walled Structures (HCATWS) is used in its improved version. In particular, its applicability is extended from structures with an initially regular grid to structures with different size of cells (sets of a higher number of finite elements). The corresponding modifications of the algorithm are discussed here. This also affects the updating rules used in the improved version; hence, the theory is revised and modified where necessary. In the outer loop of the HCATWS, bi-section search within limited length is used to define the target mass. In the inner loop, HCATWS utilizes proportional updating to redistribute the mass for each cell. Then mass correction is conducted to make sure the real mass converges to the target mass. Here the different sizes of the cells need to be considered. As applications, one linear static case is studied to demonstrate efficiency of the approach. Then, additional crash cases using nonlinear dynamic FEM are considered. Finally, the potential of using this approach for identification of optimal cross-sections of structures originating from Additive Manufacturing (AM) is explored. Here, it is important that optimized topology results from HCATWS are more easily manufactured compared to those obtained by traditional element-based, i.e. voxel-based, topology optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Shi, L., Yang, R., Zhu, P.: An adaptive response surface method for crashworthiness optimization. Eng. Optim. 45(11), 1365–1377 (2013)

    Article  Google Scholar 

  2. Gu, X., Sun, G., Li, G., Mao, L., Li, Q.: A comparative study on multiobjective reliable and robust optimization for crashworthiness design of vehicle structure. Struct. Multidiscip. Optim. 48(3), 669–684 (2013)

    Article  Google Scholar 

  3. Sun, G., Li, G., Zhou, S., Li, H., Hou, S., Li, Q.: Crashworthiness design of vehicle by using multiobjective robust optimization. Struct. Multidiscip. Optim. 44(1), 99–110 (2011)

    Article  Google Scholar 

  4. Parrish, A., Rais-Rohani, M., Najafi, A.: Crashworthiness optimisation of vehicle structures with magnesium alloy parts. Int. J. Crashworthiness 17(3), 259–281 (2012)

    Article  Google Scholar 

  5. Hou, S., Liu, T., Dong, D., Han, X.: Factor screening and multivariable crashworthiness optimization for vehicle side impact by factorial design. Struct. Multidiscip. Optim. 49(1), 147–167 (2014)

    Article  Google Scholar 

  6. Hou, S., Dong, D., Ren, L., Han, X.: Multivariable crashworthiness optimization of vehicle body by unreplicated saturated factorial design. Struct. Multidiscip. Optim. 46(6), 891–905 (2012)

    Article  Google Scholar 

  7. Yi, S., Lee, J., Park, G.: Crashworthiness design optimization using equivalent static loads. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 226(1), 23–38 (2012)

    Article  Google Scholar 

  8. Horvath, A., Hatwagner, M.F., Harmatit, I.A.: Searching for a nonlinear ODE model of vehicle crash with genetic optimization. In: 2012 7th IEEE International Symposium on Applied Computational Intelligence and Informatics (SACI) (2012)

    Google Scholar 

  9. Fang, H., Solanki, K., Horstemeyer, M.: Numerical simulations of multiple vehicle crashes and multidisciplinary crashworthiness optimization. Int. J. Crashworthiness 10(2), 161–172 (2005)

    Article  Google Scholar 

  10. Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1(4), 193–202 (1989)

    Article  Google Scholar 

  11. Rozvany, G.I., Zhou, M., Birker, T.: Generalized shape optimization without homogenization. Struct. Optim. 4(3–4), 250–252 (1992)

    Article  Google Scholar 

  12. Allaire, G., Bonnetier, E., Francfort, G., Jouve, F.: Shape optimization by the homogenization method. Numer. Math. 76(1), 27–68 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eschenauer, H.A., Kobelev, V.V., Schumacher, A.: Bubble method for topology and shape optimization of structures. Struct. Optim. 8(1), 42–51 (1994)

    Article  Google Scholar 

  14. Cavazzuti, M., Baldini, A., Bertocchi, E., Costi, D., Torricelli, E., Moruzzi, P.: High performance automotive chassis design: a topology optimization based approach. Struct. Multidiscip. Optim. 44(1), 45–56 (2011)

    Article  Google Scholar 

  15. Schumacher, A.: Parameter-based topology optimization for crashworthiness structures. In: Proceedings of the World Congress of Structural and Multidisciplinary Optimization (WCSMO-6), Rio-de-Janeiro, Brazil (2005)

    Google Scholar 

  16. Inoue, N., Shimotai, N., Uesugi, T.: Cellular automaton generating topological structures. In: Smart Structures and Materials: Second European Conference. International Society for Optics and Photonics (1994)

    Google Scholar 

  17. Gürdal, Z., Tatting, B.: Cellular automata for design of truss structures with linear and nonlinear response. In: Proceedings of the 41st AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conference, AIAA Paper (2000)

    Google Scholar 

  18. Patel, N.M., Penninger, C.L., Renaud, J.E.: Topology synthesis of extrusion-based nonlinear transient designs. J. Mech. Des. 131(6), 61003.1–61003.11 (2009)

    Google Scholar 

  19. Patel, N.M., Renaud, J.E., Tovar, A.: Compliant mechanism design using the hybrid cellular automaton method. In: 1st AIAA Multidisciplinary Design Optimization Specialist Conference (2005)

    Google Scholar 

  20. Tovar, A., Patel, N.M., Niebur, G.L., Sen, M., Renaud, J.E.: Topology optimization using a hybrid cellular automaton method with local control rules. J. Mech. Des. 128(6), 1205–1216 (2006)

    Article  Google Scholar 

  21. Aulig, N., Menzel, S., Nutwell, E., Detwiler, D.: Towards multi-objective topology optimization of structures subject to crash and static load cases. In: Engineering Optimization, pp. 847–852 (2014)

    Google Scholar 

  22. Patel, N.M., Kang, B.S., Renaud, J.E.: Topology synthesis of structures under impact loading using a hybrid cellular automaton algorithm. In: Proceedings of the 11th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Portsmouth, VA, USA (2006)

    Google Scholar 

  23. Tovar, A., Patel, N.M., Kaushik, A., Letona, G., Renaud, J., Sanders, B.: Hybrid cellular automata: biologically-inspired structural optimization technique. In: Proceedings of the 10th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Albany, NY, USA, Paper No. AIAA (2004)

    Google Scholar 

  24. Duddeck, F., Hunkeler, S., Lozano, P., Wehrle, E., Zeng, D.: Topology optimization for crashworthiness of thin-walled structures under axial impact using hybrid cellular automata. Struct. Multidiscip. Optim. 5(3), 415–428 (2016)

    Article  Google Scholar 

  25. Zeng, D., Duddeck, F.: Improved hybrid cellular automata for crashworthiness optimization of thin-walled structures. Struct. Multidiscip. Optim. 56, 101–115 (2017)

    Article  MathSciNet  Google Scholar 

  26. Bendsøe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer Science & Business Media, Heidelberg (2013)

    MATH  Google Scholar 

  27. Hunkeler, S.: Topology optimisation in crashworthiness design via hybrid cellular automata for thin walled structures. Ph.D. thesis, Queen Mary Univ of London, UK (2013)

    Google Scholar 

  28. Bochenek, B., Tajs-Zielinska, K.: Local rules of cellular automata for generating optimal topologies in structural design. In: IV European Conference on Computational Mechanics: Solids, Structures and Coupled Problems in Engineering, Paris (2010)

    Google Scholar 

  29. Bandi, P., Schmiedeler, J.P., Tovar, A.: Design of crashworthy structures with controlled energy absorption in the hybrid cellular automaton framework. J. Mech. Des. 135, 091002 (2013)

    Article  Google Scholar 

  30. Mozumder, C., Bandi, P., Patel, N.M., Renaud, J.: Thickness based topology optimization for crashworthiness design using hybrid cellular automata. In: 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA (2008)

    Google Scholar 

  31. Khandelwal, K., Tovar, A.: Hybrid cellular automaton: a novel framework for non-linear topology optimization. In: 19th Analysis and Computation Specialty Conference, ASCE 2010 (2010)

    Google Scholar 

  32. Buhl, T., Pedersen, C.B., Sigmund, O.: Stiffness design of geometrically nonlinear structures using topology optimization. Struct. Multidiscip. Optim. 19(2), 93–104 (2000)

    Article  Google Scholar 

  33. Maute, K., Schwarz, S., Ramm, E.: Adaptive topology optimization of elastoplastic structures. Struct. Optim. 15(2), 81–91 (1998)

    Article  Google Scholar 

  34. Thomas, D.: The development of design rules for selective laser melting. Ph.D. thesis, University of Wales, Cardiff, UK (2009)

    Google Scholar 

  35. Zegard, T., Paulino, G.H.: Bridging topology optimization and additive manufacturing. Struct. Multidiscip. Optim. 53(1), 175–192 (2016)

    Article  Google Scholar 

  36. Gaynor, A.T.: Topology optimization algorithms for additive manufacturing. Ph.D. thesis, Johns Hopkins University, Baltimore, Maryland, USA (2015)

    Google Scholar 

  37. Brackett, D., Ashcroft, I., Hague, R.: Topology optimization for additive manufacturing. In: Proceedings of the Solid Freeform Fabrication Symposium, Austin TX, USA, pp. 348–362 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duo Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, D., Duddeck, F. (2018). Topology Optimization of Thin-Walled Structures Under Static/Crash Loading Case in the Hybrid Cellular Automaton Framework. In: Schumacher, A., Vietor, T., Fiebig, S., Bletzinger, KU., Maute, K. (eds) Advances in Structural and Multidisciplinary Optimization. WCSMO 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-67988-4_119

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67988-4_119

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67987-7

  • Online ISBN: 978-3-319-67988-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics