Skip to main content

Safety in Human-Robot Collaborative Assembly

  • Chapter
  • First Online:
Cloud-Based Cyber-Physical Systems in Manufacturing

Abstract

Safety is critical to human-robot collaborative assembly , both locally and remotely. This has led to the monitoring of shop floor operators through tradition cameras and safety scanners. There are two main drawbacks in this kind of approach: the first is the limitation of the sensing devices which usually sense the environment from one perspective and in two dimensions only, and the second is the lack of flexibility in safety systems which usually triggers emergency stops in case of any intrusions . Such problems can be solved by using depth cameras installed carefully in the robotic environment. The advantage of this approach is the ability to install multiple depth cameras and fuse the 3D point clouds in one central server. This chapter first presents the latest accomplishments in active collision avoidance through local human-robot collaboration. A remote robotic assembly system is then introduced in the second half of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.J. Agravante, A. Cherubini, A. Kheddar, Using vision and haptic sensing for human-humanoid joint actions, in Proceedings of the IEEE Conference on Robotics, Automation and Mechatronics, RAM (2013), pp. 13–18

    Google Scholar 

  2. C.A. Monje, P. Pierro, C. Balaguer, A new approach on human–robot collaboration with humanoid robot RH-2. Robotica 29(6), 949–957 (2011)

    Google Scholar 

  3. S. Takata, T. Hirano, Human and robot allocation method for hybrid assembly systems. CIRP Ann.-Manuf. Technol. 60(1), 9–12 (2011)

    Article  Google Scholar 

  4. F. Chen, K. Sekiyama, H. Sasaki, J. Huang, B. Sun, T. Fukuda, An assembly strategy scheduling method for human and robot coordinated cell manufacturing, in IEEE International Conference on Intelligent Robots and Systems (2011), pp. 4670–4675

    Google Scholar 

  5. J. Krüger, T.K. Lien, A. Verl, Cooperation of human and machines in assembly lines. CIRP Ann.-Manuf. Technol. 58(2), 628–646 (2009)

    Google Scholar 

  6. T. Arai, R. Kato, M. Fujita, Assessment of operator stress induced by robot collaboration in assembly. CIRP Ann.-Manuf. Technol. 59(1), 5–8 (2010)

    Article  Google Scholar 

  7. D. Kuli, E.A. Croft, Affective state estimation for human–robot interaction. IEEE Trans. Robot. 23(5), pp. 991–1000 (2007)

    Google Scholar 

  8. J. Krüger, B. Nickolay, P. Heyer, G. Seliger, Image based 3D surveillance for flexible man-robot-cooperation. CIRP Ann.-Manuf. Technol. 54(1), 19–22 (2005)

    Article  Google Scholar 

  9. J.A. Corrales, F.A. Candelas, F. Torres, Safe human-robot interaction based on dynamic sphere-swept line bounding volumes. Robot. Comput. Integr. Manuf. 27(1), 177–185 (2011)

    Article  Google Scholar 

  10. Z.M. Bi, L. Wang, Advances in 3D data acquisition and processing for industrial applications. Robot. Comput. Integr. Manuf. 26(5), 403–413 (2010)

    Article  Google Scholar 

  11. T. Gecks, D. Henrich, Human-robot cooperation: safe pick-and-place operations, in Proceedings of the IEEE International on Robot and Human Interactive Communication, vol. 2005 (2005), pp. 549–554

    Google Scholar 

  12. D. Ebert, T. Komuro, A. Namiki, M. Ishikawa, Safe human-robot-coexistence: emergency-stop using a high-speed vision-chip, in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS (2005), pp. 1821–1826

    Google Scholar 

  13. C. Vogel, C. Walter, N. Elkmann, A projection-based sensor system for safe physical human-robot collaboration, in IEEE International Conference on Intelligent Robots and Systems (2013), pp. 5359–5364

    Google Scholar 

  14. J.T.C. Tan, T. Arai, Triple stereo vision system for safety monitoring of human-robot collaboration in cellular manufacturing, in Proceedings of the 2011 IEEE International Symposium on Assembly and Manufacturing, ISAM (2011), pp. 1–6

    Google Scholar 

  15. R. Schiavi, A. Bicchi, F. Flacco, Integration of active and passive compliance control for safe human-robot coexistence, in Proceedings of the IEEE International Conference on Robotics and Automation (2009), pp. 259–264

    Google Scholar 

  16. M. Fischer, D. Henrich, 3D collision detection for industrial robots and unknown obstacles using multiple depth images, in Advances in Robotics Research (2009), pp. 111–122

    Google Scholar 

  17. P. Rybski, P. Anderson-Sprecher, D. Huber, C. Niessl, R. Simmons, Sensor fusion for human safety in industrial workcells, in IEEE International Conference on Intelligent Robots and Systems (2012), pp. 3612–3619

    Google Scholar 

  18. F. Flacco, T. Kroeger, A. De Luca, O. Khatib, A depth space approach for evaluating distance to objects: with application to human-robot collision avoidance. J. Intell. Robot. Syst. Theory Appl. 80, 7–22 (2015)

    Article  Google Scholar 

  19. B. Dániel, P. Korondi, T. Thomessen, Joint level collision avoidance for industrial robots. IFAC Proc. 45(22), 655–658 (2012)

    Article  Google Scholar 

  20. A. Cherubini, R. Passama, A. Crosnier, A. Lasnier, P. Fraisse, Collaborative manufacturing with physical human-robot interaction. Robot. Comput. Integr. Manuf. 40, 1–13 (2016)

    Article  Google Scholar 

  21. Pilz GmbH & Co. KG (2016), [Online]. Available: http://www.safetyeye.com/

  22. A.Y.C. Nee, S.K. Ong, G. Chryssolouris, D. Mourtzis, Augmented reality applications in design and manufacturing. CIRP Ann.-Manuf. Technol. 61(2), 657–679 (2012)

    Article  Google Scholar 

  23. S. Tzafestas, D. Aristos, Simultaneous object recognition and position tracking for robotic applications. in Proceedings of the 2009 IEEE International Conference on Mechatronics (2009), pp. 145–169

    Google Scholar 

  24. X. Tian, H. Deng, M. Fujishima, K. Yamazaki, Quick 3D modeling of machining environment by means of on-machine stereo vision with digital decomposition. CIRP Ann.-Manuf. Technol. 56(1), 411–414 (2007)

    Google Scholar 

  25. D. Samak, A. Fischer, D. Rittel, 3D reconstruction and visualization of microstructure surfaces from 2D images. CIRP Ann.-Manuf. Technol. 56(1), 149–152 (2007)

    Google Scholar 

  26. Y. Sumi, Y. Kawai, T. Yoshimi, F. Tomita, 3D object recognition in cluttered environments by segment-based stereo vision. Int. J. Comput. Vis. 46(1), 5–23 (2002)

    Article  MATH  Google Scholar 

  27. B. Petit et al., Multicamera real-time 3D modeling for telepresence and remote collaboration. Int. J. Digit. Multimedia Broadcast. 2010, 1–12 (2010)

    Google Scholar 

  28. K. Atsushi, H. Sueyasu, Y. Funayama, T. Maekawa, System for reconstruction of three-dimensional micro objects from multiple photographic images. Comput. Aided Des. 43(8), 1045–1055 (2011)

    Article  Google Scholar 

  29. L. Wang, Wise-ShopFloor: an integrated approach for web-based collaborative manufacturing. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(4), 562–573 (2008)

    Google Scholar 

  30. L. Wang, R. Sams, M. Verner, F. Xi, Integrating Java 3D model and sensor data for remote monitoring and control. Robot. Comput. Integr. Manuf. 19(1–2), 13–19 (2003)

    Article  Google Scholar 

  31. L. Wang, M. Givehchi, G. Adamson, M. Holm, A sensor-driven 3D model-based approach to remote real-time monitoring. CIRP Ann.-Manuf. Technol. 60(1), 493–496 (2011)

    Article  Google Scholar 

  32. M. Jankowski, J.-P. Kuska, Connected components labelling—algorithms in Mathematica, Java, C++ and C#, in International Mathematica Symposium (2004)

    Google Scholar 

  33. R. Tsai, A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (1987)

    Article  Google Scholar 

  34. M.S. Fawad, Adapting Bresenham algorithm. J. Theor. Appl. Inf. Technol. 2(2), 27–30 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihui Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., Wang, X.V. (2018). Safety in Human-Robot Collaborative Assembly. In: Cloud-Based Cyber-Physical Systems in Manufacturing . Springer, Cham. https://doi.org/10.1007/978-3-319-67693-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67693-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67692-0

  • Online ISBN: 978-3-319-67693-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics