Skip to main content

Representation Learning for Retinal Vasculature Embeddings

  • Conference paper
  • First Online:
Fetal, Infant and Ophthalmic Medical Image Analysis (OMIA 2017, FIFI 2017)

Abstract

The retinal vasculature imaged with fundus photography has the potential of encoding precious information for image-based retinal biomarkers, however, progress in their development is slow due to the need of defining vasculature morphology variables a priori and developing algorithms specific to these variables. In this paper, we introduce a novel approach to learn a general descriptor (or embedding) that captures the vasculature morphology in a numerically compact vector with minimal feature engineering. The vasculature embedding is computed by leveraging the internal representation of a new encoder-enhanced fully convolutional neural network, trained end-to-end with the raw pixels and manually segmented vessels. This approach effectively transfers the vasculature patterns learned by the network into a general purpose vasculature embedding vector. Using Messidor and Messidor-2, two publicly available datasets, we test the vasculature embeddings on two tasks: (1) an image retrieval task, which retrieved similar images according to their vasculature; (2) a diabetic retinopathy classification task, where we show how the vasculature embeddings improve the classification of an algorithm based on microaneurysms detection by 0.04 AUC on average.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacGillivray, T.J., Cameron, J.R., Zhang, Q., El-Medany, A., Mulholland, C., Sheng, Z., Dhillon, B., Doubal, F.N., Foster, P.J., Trucco, E., Sudlow, C.: Suitability of UK biobank retinal images for automatic analysis of morphometric properties of the vasculature. PLoS ONE 10(5), 1–10 (2015)

    Article  Google Scholar 

  2. Trucco, E., Giachetti, A., Ballerini, L., Relan, D., Cavinato, A., MacGillivray, T.: Morphometric measurements of the retinal vasculature in fundus images with vampire. In: Biomedical Image Understanding: Methods and Applications, pp. 91–111 (2015)

    Google Scholar 

  3. Fiorin, D., Ruggeri, A.: Computerized analysis of narrow-field ROP images for the assessment of vessel caliber and tortuosity. In: Proceedings of EMBS, pp. 2622–2625 (2011)

    Google Scholar 

  4. Xu, X., Niemeijer, M., Song, Q., Sonka, M., Garvin, M.K., Reinhardt, J.M., Abramoff, M.D.: Vessel boundary delineation on fundus images using graph-based approach. IEEE Trans. Med. Imaging 30(6), 1184–1191 (2011)

    Article  Google Scholar 

  5. Azemin, M.Z.C., Kumar, D.K., Wong, T.Y., Kawasaki, R., Mitchell, P., Wang, J.J.: Robust methodology for fractal analysis of the retinal vasculature. IEEE Trans. Med. Imaging 30(2), 243–250 (2011)

    Article  Google Scholar 

  6. Bengio, Y., Courville, A., Vincent, P.: Representation learning a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–828 (2013)

    Article  Google Scholar 

  7. Fu, H., Xu, Y., Lin, S., Kee Wong, D.W., Liu, J.: DeepVessel: Retinal vessel segmentation via deep learning and conditional random field. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 132–139. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_16

    Chapter  Google Scholar 

  8. Maninis, K.-K., Pont-Tuset, J., Arbeláez, P., Van Gool, L.: Deep retinal image understanding. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 140–148. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_17

    Chapter  Google Scholar 

  9. Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., Ter Haar Romeny, B., Zimmerman, J.B., Zuiderveld, K.: Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  10. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). doi:10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  12. Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  13. Decencière, E., Zhang, X., Cazuguel, G., Laÿ, B., Cochener, B., Trone, C., Gain, P., Ordóñez-Varela, J.R., Massin, P., Erginay, A., Charton, B., Klein, J.C.: Feedback on a publicly distributed image database: The Messidor database. Image Anal. Stereology 33(3), 231–234 (2014)

    Article  MATH  Google Scholar 

  14. Giancardo, L., Meriaudeau, F., Karnowski, T.P., Tobin, K.W., Chaum, E.: Validation of microaneurysm-based diabetic retinopathy screening across retina fundus datasets. In: Proceedings of CBMS, pp. 125–130 (2013)

    Google Scholar 

Download references

Acknowledgement

This work has been supported by the Center for Precision Health and School of Biomedical Informatics at University of Texas Health Science Center at Houston. We would like to thank Daniele Cortinovis for the initial implementation of U-Net on https://github.com/orobix/retina-unet. The Messidor and Messidor-2 datasets are kindly provided by the LaTIM laboratory (see http://latim.univ-brest.fr/) and the Messidor program partners (see http://messidor.crihan.fr/)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Giancardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Giancardo, L., Roberts, K., Zhao, Z. (2017). Representation Learning for Retinal Vasculature Embeddings. In: Cardoso, M., et al. Fetal, Infant and Ophthalmic Medical Image Analysis. OMIA FIFI 2017 2017. Lecture Notes in Computer Science(), vol 10554. Springer, Cham. https://doi.org/10.1007/978-3-319-67561-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67561-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67560-2

  • Online ISBN: 978-3-319-67561-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics