Skip to main content

On the Numerical Approximation to Generalized Ostrovsky Equations: II

Dynamics of Solitary-Wave Solutions

  • Chapter
  • First Online:
Nonlinear Systems, Vol. 1

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

In this chapter generalized versions of the Ostrovsky equations are considered. These were shown to admit classical and generalized solitary wave solutions. The periodic initial-value problem for the equations is numerically solved with a fully discrete scheme based on pseudospectral discretization in space and a fourth-order composition Runge-Kutta method as time integrator. The resulting scheme is checked and applied to study numerically the dynamics of the solitary wave solutions. Specifically, we analyze the stability of classical and generalized solitary waves under small perturbations, the resolution of initial data into several solitary pulses (the so-called resolution property) and various aspects of the interaction of the solitary waves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, J.P., Bona, J.L., Henry, D.: Sufficient conditions for stability of solitary-wave solutions of model equations for long waves. Phys. D 24, 343–366 (1987)

    Article  MathSciNet  Google Scholar 

  2. Álvarez, J., Durán, A.: Error propagation when approximating multisolitons: the KdV equation as a case study. Appl. Math. Comput. 217, 1522–1539 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Álvarez, J., Durán, A.: Petviashvili type methods for traveling wave computations: I. Analysis of convergence. J. Comput. Appl. Math. 266, 39–51 (2014)

    Article  MathSciNet  Google Scholar 

  4. Álvarez, J., Durán, A.: Petviashvili type methods for traveling wave computations: II. Acceleration techniques. Math. Comput. Simul. 123, 19–36 (2016)

    Article  Google Scholar 

  5. Benilov, E.S.: On the surface waves in a shallow channel with an uneven bottom. Stud. Appl. Math. 87, 1–14 (1992)

    Article  MathSciNet  Google Scholar 

  6. Benjamin, T.B.: The stability of solitary waves. Proc. R. Soc. Lond. Ser. A 328, 153–183 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bona, J.L.: On the stability theory of solitary waves. Proc. R. Soc. Lond. Ser. A 344, 363–374 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bona, J.L., Dougalis, V.A., Karakashian, O.A., McKinney, W.R.: Conservative, high-order numerical schemes for the generalized Korteweg-de Vries equation. Philos. Trans. R. Soc. Lond. A 351, 107–164 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bona, J.L., Dougalis, V.A., Mitsotakis, D.E.: Numerical solution of KdV-KdV systems of Boussinesq equations I. The numerical scheme and generalized solitary waves. Math. Comput. Simul. 74, 214–228 (2007)

    Article  MathSciNet  Google Scholar 

  10. Bona, J.L., Dougalis, V.A., Mitsotakis, D.E.: Numerical solution of KdV-KdV systems of Boussinesq equations II. Evolution of radiating solitary waves. Nonlinearity 21, 2825–2848 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bona, J.L., Kalisch, H.: Singularity formation in the generalized Benjamin-Ono equation. Discret. Contin. Dyn. Syst. 11, 27–45 (2004)

    Article  MathSciNet  Google Scholar 

  12. Bona, J.L., Souganidis, P.E., Strauss, W.A.: Stability and instability of solitary waves of KdV type. Proc. R. Soc. Lond. Ser. A 411, 395–412 (1987)

    Article  ADS  Google Scholar 

  13. Boyd, J.P., Chen, G.Y.: Five regimes of the quasi-cnoidal, steadily translating waves of the rotation-modified Korteweg-de Vries (“Ostrovsky”) equation. Wave Motion 35, 141–155 (2002)

    Article  MathSciNet  Google Scholar 

  14. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods in Fluid Dynamics. Springer, New York-Heidelberg-Berlin (1988)

    Book  Google Scholar 

  15. Chen, G.Y., Boyd, J.P.: Analytical and numerical studies of weakly nonlocal solitary waves of the rotation-modified Korteweg-de Vries equation. Phys. D 155, 201–222 (2002)

    Article  MathSciNet  Google Scholar 

  16. Choudhury, S.R.: Solitary-wave families of the Ostrovsky equation: an approach via reversible systems theory and normal forms. Chaos Solitons Fractals 33, 1468–1479 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Choudhury, S.R., Ivanov, R.I., Liu, Y.: Hamiltonian formulation, nonintegrability and local bifurcations for the Ostrovsky equation. Chaos Solitons Fractals 34, 544–550 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  18. Clamond, D., Dutykh, D., Durán, A.: A plethora of generalized solitary gravity-capillary water waves. J. Fluid Mech. 784, 664–680 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. Dougalis, V.A., Durán, A., López-Marcos, M.A., Mitsotakis, D.E.: A numerical study of the stability of solitary waves of the Bona-Smith family of Boussinesq systems. J. Nonlinear Sci. 17, 569–607 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. Durán, A.: On the numerical approximation to generalized Ostrovsky equations: I. A numerical method and computation of solitary-wave solutions. Technical Report (2017)

    Google Scholar 

  21. El Dika, K.: Asymptotic stability of solitary waves for the Benjamin-Bona-Mahony equation. Discret. Contin. Dyn. Syst. 13, 583–622 (2005)

    Article  MathSciNet  Google Scholar 

  22. de Frutos, J., Sanz-Serna, J.M.: An easily implementable fourth-order method for the time integration of wave problems. J. Comput. Phys. 103, 160–168 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  23. Galkin, V.N., Stepanyants, Y.A.: On the existence of stationary solitary waves in a rotating fluid. J. Appl. Math. Mech. 55, 939–943 (1991)

    Article  MathSciNet  Google Scholar 

  24. Gilman, O.A., Grimshaw, R., Stepanyants, Y.A.: Approximate analytical and numerical solutions of the stationary Ostrovsky equation. Stud. Appl. Math. 95, 115–126 (1995)

    Article  MathSciNet  Google Scholar 

  25. Gilman, O.A., Grimshaw, R., Stepanyants, Y.A.: Dynamics of internal solitary waves in a rotating fluid. Dyn. Atm. Ocean 23(1), 403–411 (1995)

    ADS  Google Scholar 

  26. Grillakis, M., Shatah, J., Strauss, W.A.: Stability of solitary waves in the presence of symmetry: I. J. Funct. Anal. 74, 170–197 (1987)

    Article  MathSciNet  Google Scholar 

  27. Grimshaw, R.H.: Evolution equations for weakly nonlinear, long internal waves in a rotating fluid. Stud. Appl. Math. 73, 1–33 (1985)

    Article  MathSciNet  Google Scholar 

  28. Grimshaw, R.H., He, J.M., Ostrovsky, L.A.: Terminal damping of a solitary wave due to radiation in rotational systems. Stud. Appl. Math. 10, 197–210 (1998)

    Article  MathSciNet  Google Scholar 

  29. Grimshaw, R.H., Helfrich, K.R.: The effect of rotation on internal solitary waves. IMA J. Appl. Math. 10, 1–14 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Grimshaw, R.H., Helfrich, K.R., Johnson, E.R.: Experimental study of the effect of rotation on nonlinear internal waves. Phys. Fluids 25, 0566,021–05660,223 (2013)

    Article  ADS  Google Scholar 

  31. Grimshaw, R.H., Ostrovsky, L.A., Shira, V.I., Stepanyants, Y.A.: Long nonlinear surface and internal gravity waves in a rotating ocean. Surv. Gheophys. 19, 289–338 (1998)

    Article  ADS  Google Scholar 

  32. Helfrich, K.R.: Decay and return of internal solitary waves with rotation. Phys. Fluids 19, O26,601 (2007)

    Article  ADS  Google Scholar 

  33. Helfrich, K.R., Melville, W.K.: Long nonlinear internal waves. Annu. Rev. Fluid Mech. 38, 395–425 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  34. Isaza, P., Mejía, J.: Global Cauchy problem for the Ostrovsky equation. Nonlinear Anal. 67, 1482–1503 (2007)

    Article  MathSciNet  Google Scholar 

  35. Jbilous, K., Sadok, H.: Vector extrapolation methods, applications and numerical comparisons. J. Comput. Appl. Math. 122, 149–165 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  36. Lakoba, T., Yang, Y.: A generalized Petviashvili method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity. J. Comput. Phys. 226, 1668–1692 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  37. Levandosky, S.: On the stability of solitary waves of a generalized Ostrovsky equation. Technical Report (2006)

    Google Scholar 

  38. Levandosky, S., Liu, Y.: Stability of solitary waves of a generalized Ostrovsky equation. SIAM J. Math. Anal. 38, 985–1011 (2006)

    Article  MathSciNet  Google Scholar 

  39. Levandosky, S., Liu, Y.: Stability and weak rotation limit of solitary waves of the Ostrovsky equation. Discret. Contin. Dyn. Syst. Ser. B 7, 793–806 (2007)

    Article  MathSciNet  Google Scholar 

  40. Linares, F., Milanés, A.: Local and global well-posedness for the Ostrovsky equation. J. Differ. Equ. 222, 325–340 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  41. Liu, Y., Ohta, M.: Stability of solitary waves for the Ostrovsky equation. Proc. AMS 136, 511–517 (2008)

    Article  MathSciNet  Google Scholar 

  42. Liu, Y., Varlamov, V.: Stability of solitary waves and weak rotation limit for the Ostrovsky equation. J. Differ. Equ. 203, 159–183 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  43. Martel, Y., Merle, F.: Asymptotic stability of solitons for subcritical generalized KdV equations. Arch. Ration. Mech. Anal. 157, 219–254 (2001)

    Article  MathSciNet  Google Scholar 

  44. Martel, Y., Merle, F., Mizumachi, T.: Description of the inelastic collision of two solitary waves for the BBM equation. Arch. Ration. Mech. Anal. 196, 517–574 (2010)

    Article  MathSciNet  Google Scholar 

  45. Miller, J.R., Weinstein, M.I.: Asymptotic stability of solitary waves for the Regularized Long- Wave equation. Commun. Pure Appl. Math. 49, 399–441 (1996)

    Article  MathSciNet  Google Scholar 

  46. Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    Book  Google Scholar 

  47. Ostrovsky, L.A.: Nonlinear internal waves in a rotating ocean. Okeanologia 18, 181–191 (1978)

    Google Scholar 

  48. Pego, R.L., Weinstein, M.I.: Asymptotic stability of solitary waves. Commun. Math. Phys. 164, 305–349 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  49. Pego, R.L., Weinstein, M.I.: Convective linear stability of solitary waves for Boussinesq equations. Stud. Appl. Math. 99, 311–375 (1997)

    Article  MathSciNet  Google Scholar 

  50. Pelinovsky, D.E., Stepanyants, Y.A.: Convergence of Petviashvili’s iteration method for numerical approximation of stationary solutions of nonlinear wave equations. SIAM J. Numer. Anal. 42, 1110–1127 (2004)

    Article  MathSciNet  Google Scholar 

  51. Petviashvili, V.I.: Equation of an extraordinary soliton. Sov. J. Plasma Phys. 2, 257–258 (1976)

    ADS  Google Scholar 

  52. Sanz-Serna, M..J., Calvo, M.P.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994)

    Book  Google Scholar 

  53. Sidi, A.: Convergence and stability of minimal polynomial and reduced rank extrapolation algorothms. SIAM J. Numer. Anal. 23, 197–209 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  54. Sidi, A., Ford, W.F., Smith, D.A.: Acceleration of convergence of vector sequences. SIAM J. Numer. Anal. 23, 178–196 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  55. Smith, D.A., Ford, W.F., Sidi, A.: Extrapolation methods for vector sequences. SIAM Rev. 29, 199–233 (1987)

    Article  MathSciNet  Google Scholar 

  56. Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000)

    Book  Google Scholar 

  57. Tsuwaga, K.: Well-posedness and weak rotation limit for the Ostrovsky equation. J. Differ. Equ. 247, 3163–3180 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  58. Varlamov, V., Liu, Y.: Cauchy problem for the Ostrovsky equation. Discret. Dyn. Syst. 10, 731–751 (2004)

    Article  MathSciNet  Google Scholar 

  59. Weinstein, M.I.: Lyapunov stability of ground states of nonlinear dispersive evolution equations. Commun. Pure Appl. Math. 39, 51–68 (1986)

    Article  MathSciNet  Google Scholar 

  60. Weinstein, M.I.: Existence and dynamic stability of solitary-wave solutions of equations arising in long wave propagation. Commun. Partial Differ. Equ. 12, 1133–1173 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Spanish Ministerio de Economía y Competitividad under the Research Grant MTM2014-54710-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Durán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Durán, Á. (2018). On the Numerical Approximation to Generalized Ostrovsky Equations: II. In: Carmona, V., Cuevas-Maraver, J., Fernández-Sánchez, F., García- Medina, E. (eds) Nonlinear Systems, Vol. 1. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-66766-9_13

Download citation

Publish with us

Policies and ethics