Skip to main content

Involvement of Thiol-Based Mechanisms in Plant Growth, Development, and Stress Tolerance

  • Chapter
  • First Online:
Glutathione in Plant Growth, Development, and Stress Tolerance

Abstract

Thiol-based mechanisms of plant growth regulation and stress response rely on cellular redox potential, depending mostly on glutathione content (EGSSG/2GSH). Thiol (SH) groups play various roles in the cell, with their redox state affecting the activity and structure of many enzymes, receptors, and transcription factors. The oxidation of -SH to the sulfinic (R-S02H) and sulfonic (R-S03H) acid may cause an irreversible enzyme inactivation and intermolecular protein cross-linking. The reversible oxidation of protein cysteine residues with the rise of formation of radical thiol, sulfenic acid (R-SOH), and S-nitrosothiol (SNT) is often an intermediate step to the formation of a mixed disulfide. Therefore, the most probable modification of these single reactive sulfhydryls is S-thiolation, resulting in formation of the mixed disulfide with low-molecular-weight cellular thiols such as glutathione. This modification is metabolically labile as it is evidenced by rapid “dethiolation” by several reductive processes. Intensity of revocation of Cys residues to reduced state is strongly based on glutaredoxin (Grx) and thioredoxin (Trx) activities, which are part of antioxidative system, regulating thiol-disulfide homeostasis in plant cells. Thus, the dynamic modification of proteins by S-thiolation/dethiolation represents one of the more important adaptive functions by reprogramming metabolism and protecting protein synthesis against irreversible oxidation. Alternatively, it may serve a regulatory role analogous to other posttranslational modifications such as protein phosphorylation. Thus, it can modulate cellular life cycle processes (division, differentiation, programmed cell death), energy metabolism, protein folding and degradation, pathogen resistance, and many others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abat JK, Deswal R (2009) Differential modulation of S-nitrosoproteome of Brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the inactivation of its carboxylase activity. Proteomics 9:4368–4380

    Google Scholar 

  • Abat JK, Mattoo AK, Deswal R (2008) S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata- ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition. FEBS J 275:2862–2872

    Article  CAS  PubMed  Google Scholar 

  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S, Ohsugi R (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69:26–36

    Article  CAS  PubMed  Google Scholar 

  • Bach RD, Dmitrenko O, Thorpe C (2008) Mechanism of thiolate-disulfide interchange reactions in biochemistry. J Org Chem 73(1):12–21

    Article  CAS  PubMed  Google Scholar 

  • Bai XG, Yang LM, Tian MH, Chen JH, Shi JS, Yang YP, Hu X (2011) Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation. PLoS One 6:e20714

    Google Scholar 

  • Balmant KM, Parker J, Yoo M-J, Zhu N, Dufresne C, Chen S (2015) Redox proteomics of tomato in response to Pseudomonas syringae infection. Hortic Res 2:15043

    Google Scholar 

  • Barrett WC, De Gnore JP, Konig S, Fales HM, Keng YF, Zhang ZY, Yim MB, Chock PB (1999) Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38:6699–6705

    Article  CAS  PubMed  Google Scholar 

  • Bashir H, Ahmad J, Bagheri R, Nauman M, Qureshi MI (2013) Limited sulfur resource forces Arabidopsis thalianato shift towards non-sulfur tolerance under cadmium stress. Environ Exp Bot 94:19–32

    Article  CAS  Google Scholar 

  • Baty JW, Hampton MB, Winterbourn CC (2002) Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis. Proteomics 2:1261–1266

    Article  CAS  PubMed  Google Scholar 

  • Bedhomme M, Adamo M, Marchand CH, Couturier J, Rouhier N, Lemaire SD, Zaffagnini M, Trost P (2012) Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro. Biochem J 445:337–347

    Google Scholar 

  • Begara-Morales JC, Sánchez-Calvo B, Chaki M, Valderrama R, Mata-Pérez C, López-Jaramillo J, Padilla MN, Carreras A, Corpas FJ, Barroso JB (2014) Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot 65:527–538

    Google Scholar 

  • Belenghi B, Romero-Puertas MC, Vercammen D, Brackenier A, Inzé D, Delledonne M, Van Breusegem F (2007) Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J Biol Chem 282:1352–1358

    Article  CAS  PubMed  Google Scholar 

  • Bhatt I, Tripathi BN (2011) Plant peroxiredoxins: catalytic mechanisms, functional significance and future perspectives. Biotechnol Adv 29(6):850–859

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee S, Deterding LJ, Jiang J, Bonini MG, Tomer KB, Ramirez DC, Mason RP (2007) Electron transfer between a tyrosyl radical and a cysteine residue in hemoproteins: spin trapping analysis. J Am Chem Soc 129:13493–13501

    Article  CAS  PubMed  Google Scholar 

  • Birtić S, Ksas B, Genty B, Mueller MJ, Triantaphylides C, Havaux M (2011) Using spontaneous photon emission to image lipid oxidation patterns in plant tissues. Plant J 67:1103–1115

    Article  PubMed  CAS  Google Scholar 

  • Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–984

    Article  CAS  PubMed  Google Scholar 

  • Bogdan J, Zagdańska B (2009) Alterations in sugar metabolism coincide with a transition of wheat seedlings to dehydration intolerance. Environ Exp Bot 66:186–194

    Article  CAS  Google Scholar 

  • Broniowska KA, Diers AR, Hogg N (2013) S-nitrosoglutathione. Biochim Biophys Acta 1830:173–3181

    Google Scholar 

  • Buchanan BB, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220

    Article  CAS  PubMed  Google Scholar 

  • Butt AD, Ohlrogge JB (1991) Acyl carrier protein is conjugated to glutathione in spinach seed. Plant Physiol 96(3):937–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bykova N, Rampitsch C (2013) Modulating protein function through reversible oxidation: redox-mediated processes in plants revealed through proteomics. Proteomics 13:579–596

    Article  CAS  PubMed  Google Scholar 

  • Bykova NV, Hoehn B, Rampitsch C, Banks T, Stebbing JA, Fan T, Knox R (2011) Redox-sensitive proteome and antioxidant strategies in wheat seed dormancy control. Proteomics 11:865–882

    Article  CAS  PubMed  Google Scholar 

  • Chae HZ, Oubrahim H, Park JW, Rhee SG, Chock PB (2012) Protein glutathionylation in the regulation of peroxiredoxins: a family of thiol-specific peroxidases that function as antioxidants, molecular chaperones, and signal modulators. Antioxid Redox Signal 16(6):506–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CM, Kristopeit SM (1981) Metabolism of cytokinins: dephosphorylation of cytokinin ribonucleotide by 5'-nucleotidase from wheat. Plant Physiol 67:494–498

    Google Scholar 

  • Chuang MH, Wu MS, Lo WL, Lin JT, Wong CH, Chiou SH (2006) The antioxidant protein alkylhydroperoxide reductase of Heliobacter pylori switches from a peroxide reductase to a molecular chaperone function. Proc Natl Acad Sci U S A 103:2552–2557

    Google Scholar 

  • Chung HS, Wang SB, Venkatraman V, Murray CI, Van Eyk JE (2013) Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Circ Res 112:382–392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Clark G, Konopka-Postupolska D, Hennig J, Roux S (2010) Is annexin 1 a multifunctional protein during stress responses? Plant Signal Behav 5:303–7

    Google Scholar 

  • Colville L, Kranner I (2010) Desiccation tolerant plants as model systems to study redox regulation of protein thiols. Plant Growth Regul 62:241–255

    Article  CAS  Google Scholar 

  • Cooper AJ, Pinto JT, Callery PS (2011) Reversible and irreversible protein glutathionylation: biological and clinical aspects. Expert Opin Drug Metab Toxicol 7:891–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corpas FJ, Palma JM, del Río LA, Barroso JB (2013) Protein tyrosine nitration in higher plants grown under natural and stress conditions. Front Plant Sci 4:29

    PubMed  PubMed Central  Google Scholar 

  • Couturier J, Jacquot JP, Rouhier N (2009) Evolution and diversity of glutaredoxins in photosynthetic organisms. Cell Mol Life Sci 66:2539–2557

    Article  CAS  PubMed  Google Scholar 

  • Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A (2009) Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci 34(2):85–96

    Article  CAS  PubMed  Google Scholar 

  • de Pinto MC, Locato V, Sgobba A, Romero-Puertas MDC, Gadaleta C, Delledonne M, De Gara L (2013) S-nitrosylation of ascorbate peroxidase is part of programmed cell death signaling in tobacco bright yellow-2 cells. Plant Physiol 163:1766–1775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Díaz M, Achkor H, Titarenko E, Martínez MC (2003) The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid. FEBS Lett 543:136–139

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Vivancos P, Dong Y, Ziegler K, Markovic J, Pallardó FV, Pellny TK, Verrier PJ, Foyer CH (2010) Recruitment of glutathione into the nucleus during cell proliferation adjusts whole-cell redox homeostasis in Arabidopsis thaliana and lowers the oxidative defence shield. Plant J 64(5):825–838

    Google Scholar 

  • Diaz-Vivancos P, de Simone A, Kiddle G, Foyer CH (2015) Glutathione-linking cell proliferation to oxidative stress. Free Radic Biol Med 89:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ (2011) Peroxiredoxins in plants and cyanobacteria. Antioxid Redox Signal 15(4):1129–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietz KJ (2014) Redox regulation of transcription factors in plant stress acclimation and development. Antioxid Redox Signal 21(9):1356–1372

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Lapthorn A, Edwards R (2002) Plant glutathione transferases. Genome Biol 3(3):REVIEWS3004

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon DP, Fordham-Skelton AP, Edwards R (2005a) Redox regulation of a soybean tyrosine-specific protein phosphatase. Biochemistry 44:7696–7703

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Skipsey M, Grundy NM, Edwards R (2005b) Stress-induced protein S-glutathionylation in Arabidopsis. Plant Physiol 138:2233–2244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Maarouf-Bouteau H, Meimoun P, Job C, Job D, Bailly C (2013) Role of protein and mRNA oxidation in seed dormancy and germination. Front Plant Sci 4:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Elviri L, Speroni F, Careri M, Mangia A, di Toppi LS, Zottini M (2010) Identification of in vivo nitrosylated phytochelatins in Arabidopsis thaliana cells by liquid chromatography-direct electrospray-linear ion trap-mass spectrometry. J Chromatogr A 1217:4120–4126

    Article  CAS  PubMed  Google Scholar 

  • Fares A, Rossignol M, Peltier JB (2011) Proteomics investigation of endogenous S-nitrosylation in Arabidopsis. Biochem Biophys Res Commun 416:331–336

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff N (2006) Redox regulatory mechanisms in cellular stress responses. Ann Bot 98(2):289–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102:8054–8059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figueiredo-Pereira ME, Yakushin S, Cohen G (1998) Disruption of the intracellular sulfhydryl homeostasis by cadmium-induced oxidative stress leads to protein thiolation and ubiquitination in neuronal cells. J Biol Chem 273(12703):12709

    Google Scholar 

  • Findlay VJ, Townsend DM, Morris TE, Fraser JP, He L, Tew KD (2006) A novel role for human sulfiredoxin in the reversal of glutathionylation. Cancer Res 66:6800–6806

    Article  CAS  PubMed  Google Scholar 

  • Gallogly MM, Starke DW, Mieyal JJ (2009) Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid Redox Signal 11(5):1059–1081

    Google Scholar 

  • Gao XH, Zaffagnini M, Bedhomme M, Michelet L, Cassier-Chauvat C, Decottignies P, Lemaire SD (2010) Biochemical characterization of glutaredoxins from Chlamydomonas reinhardtii: kinetics and specificity in deglutathionylation reactions. FEBS Lett 584:2242–2248

    Article  CAS  PubMed  Google Scholar 

  • Gaupels F, Kuruthukulangarakoola GT, Durner J (2011) Upstream and downstream signals of nitric oxide in pathogen defence. Curr Opin Plant Biol 14:707–714

    Article  CAS  PubMed  Google Scholar 

  • Gelhaye E, Rouhier N, Gérard J, Jolivet Y, Gualberto J, Navrot N, Ohlsson PI, Wingsle G, Hirasawa M, Knaff DB, Wang H, Dizengremel P, Meyer Y, Jacquot JP (2004) A specific form of thioredoxin h occurs in plant mitochondria and regulates the alternative oxidase. Proc Natl Acad Sci U S A 101(40):14545–14550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelhaye E, Rouhier N, Navrot N, Jacquot JP (2005) The plant thioredoxin system. Cell Mol Life Sci 62:24–35

    Article  CAS  PubMed  Google Scholar 

  • Gietler M, Nykiel M, Orzechowski S, Fettke J, Zagdańska B (2016) Proteomic analysis of S-nitrosylated and S-glutathionylated proteins in wheat seedlings with different dehydration tolerances. Plant Physiol Biochem 108:507–518

    Article  CAS  PubMed  Google Scholar 

  • Giles GI, Tasker KM, Jacob C (2001) Hypothesis: the role of reactive sulphur species in oxidative stress. Free Radic Biol Med 31:1279–1283

    Article  CAS  PubMed  Google Scholar 

  • Giles GI, Tasker KM, Collins C, Giles NM, O’rourke E, Jacob C (2002) Reactive sulphur species: an in vitro investigation of the oxidation properties of disulphide S-oxides. Biochem J 364:579–585

    Google Scholar 

  • Giles NM, Watts AB, Giles GI, Fry FH, Littlechild JA, Jacob C (2003) Metal and redox modulation of cysteine protein function. Chem Biol 10:677–693

    Article  CAS  PubMed  Google Scholar 

  • Grant CM, Quinn KA, Dawes IW (1999) Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol Cell Biol 19(2650):2656

    Google Scholar 

  • Hell R, Wirtz M (2011) Molecular biology, biochemistry and cellular physiology of cysteine metabolism in Arabidopsis thaliana. Arabidopsis Book 9:e0154

    Article  PubMed  PubMed Central  Google Scholar 

  • Henmi K, Yanagida M, Ogawa K (2007) Roles of reactive oxygen species and glutathione in plant development. Int J Plant Dev Biol 1(2):185–193

    Google Scholar 

  • Hepworth SR, Zhang Y, McKim S, Li X, Haughn GW (2005) BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell 17:1434–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrero E, de la Torre-Ruiz MA (2007) Monothiol glutaredoxins: a common domain for multiple functions. Cell Mol Life Sci 64(12):1518–1530

    Article  CAS  PubMed  Google Scholar 

  • Hess DT, Matsumoto A, Nudelman R, Stamler JS (2001) S-Nitrosylation: spectrum and specificity. Nat Cell Biol 3:E46–E49

    Article  CAS  PubMed  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    Article  CAS  PubMed  Google Scholar 

  • Hill BG, Bhatnagar A (2012) Protein S-glutathiolation: redox-sensitive regulation of protein function. J Mol Cell Cardiol 52(3):559–567

    Article  CAS  PubMed  Google Scholar 

  • Hou Z, Wang L, Liu J, Hou L, Liu X (2013) Hydrogen sulfide regulates ethylene-induced stomatal closure in Arabidopsis thaliana. J Integr Plant Biol 55:277–289

    Article  CAS  PubMed  Google Scholar 

  • Iglesias-Baena I, Barranco-Medina S, Lázaro-Payo A, López-Jaramillo FJ, Sevilla F, Lázaro JJ (2010) Characterization of plant sulfiredoxin and role of sulphinic form of 2-Cys peroxiredoxin. J Exp Bot 61:1509–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias-Baena I, Barranco-Medina S, Sevilla F, Lázaro J-J (2011) The dual-targeted plant sulfiredoxin retroreduces the sulfinic form of atypical mitochondrial peroxiredoxin. Plant Physiol 155:944–955

    Article  CAS  PubMed  Google Scholar 

  • Ito H, Iwabuchi M, Ogawa K (2003) The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in Arabidopsis thaliana: detection using biotinylated glutathione. Plant Cell Physiol 44:655–660

    Article  CAS  PubMed  Google Scholar 

  • Jacob C, Anwar A (2008) The chemistry behind redox regulation with a focus on sulphur redox systems. Physiol Plant 133:469–480

    Article  CAS  PubMed  Google Scholar 

  • Jacquot JP, Rouhier N, Gelhaye E (2002) Redox control by dithiol-disulfide exchange in plants. Part I. Chloroplastic systems. Ann N Y Acad Sci 973:508–519

    Article  CAS  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP research group.bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  CAS  PubMed  Google Scholar 

  • Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, Stamler JS, Rhee SG, van der Vliet A (2008) Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 45:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung CH, Thomas JA (1996) S-Glutahiolated hepatocyte proteins and insulin disulfides as substrates for reduction by glutaredoxin, thioredoxin, protein disulfide isomerase and glutathione. Arch Biochem Biophys 335:61–72

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Takemoto D, Kawakita K (2013) Proteomic analysis of S-nitrosylated proteins in potato plant. Physiol Plant 148:371–386

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Jang HH, Lee JR, Sung NR, Lee HB, Lee DH, Lee DH, Park DJ, Kang CH, Chung WS, Lim CO, Yun DJ, Kim WY, Lee KO, Lee SY (2009) Oligomerization and chaperone activity of a plant 2-Cys peroxiredoxin in response to oxidative stress. Plant Sci 177:227–232

    Article  CAS  Google Scholar 

  • Klatt P, Lamas S (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267:4928–4944

    Article  CAS  PubMed  Google Scholar 

  • Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J (2009) The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol 150(3):1394–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kranner I, Birtić S, Anderson K, Pritchard HW (2006) Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death? Free Radic Biol Med 40:2155–2165

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol 188:655–673

    Article  CAS  PubMed  Google Scholar 

  • Kubienová L, Kopečný D, Tylichová M, Briozzo P, Skopalová J, Šebela M, Navrátil M, Tâche R, Luhová L, Barroso JB, Petřivalský M (2013) Structural and functional characterization of a plant S-nitrosoglutathione reductase from Solanum lycopersicum. Biochimie 95:889–902

    Article  PubMed  CAS  Google Scholar 

  • Kuruthukulangarakoola GT, Lindermayr C (2013) Regulation and function of protein S-nitrosylation in plant stress. In: Sarwat M, Ahmad A, Abdin MZ (eds) Stress signaling in plants: genomics and proteomics perspective, vol 1. Springer, New York, pp 123–148

    Google Scholar 

  • Kuźniak E, Kazmierczak A, Wielanek M, Glowacki R, Kornas A (2013) Involvement of salicylic acid, glutathione and protein S-thiolation in plant cell death-mediated defence response of Mesembryanthemum crystallinum against Botrytis cinerea. Plant Physiol Biochem 63:30–38

    Article  PubMed  CAS  Google Scholar 

  • Lai TS, Hausladen A, Slaughter TF, Eu JP, Stamler JS, Greenberg CS (2001) Calcium regulates S-nitrosylation, denitrosylation, and activity of tissue transglutaminase. Biochemistry 40:4904–4910

    Google Scholar 

  • Lamotte O, Bertoldo JB, Besson-Bard A, Rosnoblet C, Aimé S, Hichami S, Terenzi H, Wendehenne D (2014) Protein S-nitrosylation: specificity and identification strategies in plants. Front Chem 2:114

    PubMed  Google Scholar 

  • Lee K, Lee J, Kim Y, Bae D, Kang KY, Yoon SC, Lim D (2004) Defining the plant disulfide proteome. Electrophoresis 25:532–541

    Article  CAS  PubMed  Google Scholar 

  • Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E (2008) Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell 20:786–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leferink NG, Van Duijn E, Barendregt A, Heck AJ, Van Berkel WJ (2009) Galactonolactone dehydrogenase requires a redox-sensitive thiol for optimal production of vitamin C. Plant Physiol 150:596–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leichert LI, Jakob U (2004) Protein thiol modifications visualized in vivo. PLoS Biol 2:1723–1737

    Google Scholar 

  • Leterrier C, Vacher H, Fache MP, d'Ortoli SA, Castets F, Autillo-Touati A, Dargent B (2011) End-binding proteins EB3 and EB1 link microtubules to ankyrin G in the axon initial segment. Proc Natl Acad Sci U S A 108(21):8826–8831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leterrier M, Airaki M, Palma JM, Chaki M, Barroso JB, Corpas FJ (2012) Arsenic triggers the nitric oxide (NO) and S-nitrosoglutathione (GSNO) metabolism in Arabidopsis. Environ Pollut 166:136–143

    Article  CAS  PubMed  Google Scholar 

  • Li S (2014) Redox modulation matters: emerging functions for glutaredoxins in plant development and stress responses. Plant (Basel) 3(4):559–582

    Google Scholar 

  • Li J, Jia H, Wang J, Cao Q, Wen Z (2014) Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root. Protoplasma 251:899–912

    Google Scholar 

  • Lin AH, Wang YQ, Tang JY, Xue P, Li CL, Liu LC, Hu B, Yang F, Loake GJ, Chu C (2012) Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol 158:451–464

    Article  CAS  PubMed  Google Scholar 

  • Lindermayr C, Saalbach G, Durner J (2005) Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol 137:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindermayr C, Saalbach G, Bahnweg G, Durner J (2006) Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation. J Biol Chem 281:4285–4291

    Article  CAS  PubMed  Google Scholar 

  • Lindermayr C, Sell S, Muller B, Leister D, Durner J (2010) Redox regulation of the NPR1-TGA1 system of Arabidopsis thaliana by nitric oxide. Plant Cell 22:2894–2907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lowther WT, Haynes AC (2011) Reduction of cysteine sulfinic acid in eukaryotic, typical 2-Cys peroxiredoxins by sulfiredoxin. Antioxid Redox Signal 15:99–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma FF, Lu R, Liu HY, Shi B, Zhang JH, Tan MP, Zhang A, Jiang M (2012) Nitric oxide activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid induced antioxidant defence in maize. J Exp Bot 63:4835–4847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marino SM, Gladyshev VN (2010) Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation. J Mol Biol 395:844–859

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Ruiz A, Araujo IM, Izquierdo-Alvarez A, Hernansanz-Agustin P, Lamas S, Serrador JM (2013) Specificity in S-nitrosylation: a short-range mechanism for NO signaling? Antioxid Redox Signal 19:1220–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumoto M, Ogawa K (2008) New insight into the Calvin cycle regulation – glutathionylation of fructose bisphosphate aldolase in response to illumination. In: Photosynthesis. Energy from the sun. Springer, Dordrecht, pp 871–874

    Chapter  Google Scholar 

  • Meyer Y, Belin C, Delorme-Hinoux V, Reichheld JP, Riondet C (2012) Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, crosstalks, and functional significance. Antioxid Redox Signal 17:1124–1160

    Article  CAS  PubMed  Google Scholar 

  • Michelet L, Zaffagnini M, Marchand C, Collin V, Decottignies P, Tsan P, Lancelin JM, Trost P, Miginiac-Maslow M, Noctor G, Lemaire SD (2005) Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants. Proc Natl Acad Sci U S A 102:16478–16483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelet L, Zaffagnini M, Vanacker H, Le Marechal P, Marchand C, Schroda M, Lemaire SD, Decottignies P (2008) In vivo targets of S-thiolation in Chlamydomonas reinhardtii. J Biol Chem 283:21571–21578

    Article  CAS  PubMed  Google Scholar 

  • Michelet L, Zaffagnini M, Morisse S, Sparla F, Pérez-Pérez ME, Francia F, Danon D, Marchand CH, Fermani S, Trost P, Lemaire SD (2013) Redox regulation of the Calvin–Benson cycle: something old, something new. Front Plant Sci 4:470

    Article  PubMed  PubMed Central  Google Scholar 

  • Mieyal JJ, Chock PB (2012) Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on S-glutathionylation. Antioxid Redox Signal 16(6):471–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra M, Jiang H, Wu L, Chawsheen HA, Wei Q (2015) The sulfiredoxin-peroxiredoxin (Srx-Prx) axis in cell signal transduction and cancer development. Cancer Lett 366:150–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohapatra S, Mittra B (2016) Protein glutathionylation protects wheat (Triticum aestivum Var. Sonalika) against Fusarium induced oxidative stress. Plant Physiol Biochem 109:319–325

    Article  CAS  PubMed  Google Scholar 

  • Møller IM, Rogowska-Wrzesinska A, Rao RS (2011) Protein carbonylation and metal-catalyzed protein oxidation in a cellular perspective. J Proteome 74:2228–2242

    Article  CAS  Google Scholar 

  • Morisse S, Zaffagnini M, Gao XH, Lemaire SD, Marchand CH (2014) Insight into protein S-nitrosylation in Chlamydomonas reinhardtii. Antioxid Redox Signal 21:1271–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mortimer JC, Laohavisit A, Macpherson N, Webb A, Brownlee C, Battey NH, Davies JM (2008) Annexins: multifunctional components of growth and adaptation. J Exp Bot 59:533–544

    Article  CAS  PubMed  Google Scholar 

  • Nagy P (2013) Kinetics and mechanisms of thiol–disulfide exchange covering direct substitution and thiol oxidation-mediated pathways. Antioxid Redox Signal 18(13):1623–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy P, Winterbourn CC (2010) Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorus acid to generate polusulfides. Chem Res Toxicol 23(10):1541–1543

    Article  CAS  PubMed  Google Scholar 

  • Navari‐Izzo F, Quartacci MF, Pinzino C, Rascio N, Vazzana C, Sgherri CLM (2000) Protein dynamics in thylakoids of the desiccation‐tolerant plant Boea hygroscopica during dehydration and rehydration. Plant Physiol 124(3):1427–1436

    Google Scholar 

  • Netto LES, de Oliveira MA, Monteiro G, Demasi APD, Cussiol JRR, Discola KF, Demasi M, Silva GM, Alves SV, Faria VG, Horta BB (2007) Reactive cysteine in proteins: protein folding, antioxidant defense, redox signaling and more. Comp Biochem Physiol C 146:180–193

    Google Scholar 

  • Noguera-Mazon V, Lemoine J, Walker O, Rouhier N, Salvador A, Jacquot JP, Milzani A (2006) Glutathionylation induces the dissociation of 1-Cys D-peroxiredoxin non-covalent homodimer. J Biol Chem 281:31736–31742

    Article  CAS  PubMed  Google Scholar 

  • Nordstrand K, Åslund F, Holmgren A, Otting G, Berndt KD (1999) NMR structure of Escherichia coli glutaredoxin 3-glutathione mixed disulfide complex: implications for the enzymatic mechanism. J Mol Biol 286(541):552

    Google Scholar 

  • Obinger C, Regelsberger G, Strasser G, Burner U, Peschek GA (1997) Purification and characterization of a homodimeric catalase-peroxidase from the cyanobacterium Anacystis nidulans. Biochem Biophys Res Commun 235:545–552

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Galisteo AP, Rodriguez-Serrano M, Pazmino DM, Gupta DK, Sandalio LM, Romero-Puertas MC (2012) S-Nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot 63:2089–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmieri L, Papaleo V, Porcelli V, Scarcia P, Gaita L, Sacco R (2010) Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol Psychiatry 15:38–52

    Article  CAS  PubMed  Google Scholar 

  • Peltoniemi MJ, Karala AR, Jurvansuu JK, Kinnula VL, Ruddock LW (2006) Insights into deglutathionylation reactions. Different intermediates in the glutaredoxin and protein disulfide isomerase catalyzed reactions are defined by the gamma-linkage present in glutathione. J Biol Chem 281:33107–33114

    Article  CAS  PubMed  Google Scholar 

  • Perazzolli M, Dominici P, Romero-Puertas MC, Zago ED, Zeier J, Sonoda M, Lamb C, Delledonne M (2004) Arabidopsis non-symbiotic haemoglobin AHb1 modulates nitric oxide bioactivity. Plant Cell 16:1–10

    Article  Google Scholar 

  • Perez-Bueno ML, Rahoutei J, Sajnani C, García-Luque I, Barón M (2004) Proteomic analysis of the oxygen evolving complex of photosystem II under biotic stress: studies on Nicotiana benthamiana infected with tobamoviruses. Proteomics 4:418–425

    Article  CAS  PubMed  Google Scholar 

  • Pivato M, Fabrega-Prats M, Masi A (2014) Low-molecular-weight thiols in plants: functional and analytical implications. Arch Biochem Biophys 560:83–99

    Article  CAS  PubMed  Google Scholar 

  • Pukacka S, Ratajczak E (2007) Ascorbate and glutathione metabolism during development and desiccation of orthodox and recalcitrant seeds of the genus Acer. Funct Plant Biol 34:601–613

    Google Scholar 

  • Quijano C, Alvarez B, Gatti RM, Augusto O, Radi R (1997) Pathways of peroxynitrite oxidation of thiol groups. Biochemist J322:167–173

    Article  Google Scholar 

  • Reddie KG, Carroll KS (2008) Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol 12(6):746–754

    Article  CAS  PubMed  Google Scholar 

  • Reddy AS (2001) Molecular motors and their functions in plants. Int Rev Cytol 204:97–178

    Article  CAS  PubMed  Google Scholar 

  • Rey P, Bécuwe N, Barrault M-B, Rumeau D, Havaux M, Biteau B, Toledano MB (2007) The Arabidopsis thaliana sulfiredoxin is a plastidic cysteine-sulfinic acid reductase involved in the photooxidative stress response. Plant J 49:505–514

    Article  CAS  PubMed  Google Scholar 

  • Rhazi L, Cazalis R, Lemelin E, Aussenac T (2003) Changes in the glutathione thiol-disulfide status during wheat grain development. Plant Physiol Biochem 41:895–902

    Article  CAS  Google Scholar 

  • Rodríguez-Serrano M, Pazmiño DM, Sparkes I, Rochetti A, Hawes C, Romero-Puertas MC, Sandalio LM (2014) 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics. J Exp 65(17):4783–4793

    Google Scholar 

  • Romero-Puertas MC, Campostrini N, Matte A, Righetti PG, Perazzolli M, Zolla L, Roepstorff P, Delledonne M (2008) Proteomic analysis of S-nitrosylated proteins in Arabidopsis thaliana undergoing hypersensitive response. Proteomics 8:1459–1469

    Article  CAS  PubMed  Google Scholar 

  • Roos G, Messens J (2011) Protein sulfenic acid formation: from cellular damage to redox regulation. Free Radic Biol Med 51:314–326

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N (2010) Plant glutaredoxins: pivotal players in redox biology and iron-sulphur centre assembly. New Phytol 186:365–372

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–166

    Article  CAS  PubMed  Google Scholar 

  • Schnaubelt D, Queval G, Dong Y, Diaz-Vivancos P, Makgopa ME, Howell G, De Simone A, Bai J, Hannah MA, Foyer CH (2015) Low glutathione regulates gene expression and the redox potentials of the nucleus and cytosol in Arabidopsis thaliana. Plant Cell Environ 38(2):266–279

    Google Scholar 

  • Serpa V, Vernal J, Lamattina L, Grotewold E, Cassia R, Terenzi H (2007) Inhibition of AtMYB2 DNA-binding by nitric oxide involves cysteine S-nitrosylation. Biochem Biophys Res Commun 361:1048–1053

    Article  CAS  PubMed  Google Scholar 

  • Serrato AJ, Fernández-Trijueque J, Barajas-López J-D, Chueca A, Sahrawy M (2013) Plastid thioredoxins: a “one-for-all” redox-signaling system in plants. Front Plant Sci 4:463

    Article  PubMed  PubMed Central  Google Scholar 

  • Skaff O, Pattison DI, Davies MJ (2009) Hypothiocyanous acid reactivity with low-molecular-mass and protein thiols: absolute rate constants and assessment of biological relevance. Biochemist J422(1):111–117

    Article  CAS  Google Scholar 

  • Spadaro D, Yun B-W, Spoel SH, Chu C, Wang Y-Q, Loake GJ (2010) The redox switch: dynamic regulation of protein function by cysteine modifications. Physiol Plant 138:360–371

    Article  CAS  PubMed  Google Scholar 

  • Staab CA, Ålander J, Brandt M, Lengqvist J, Morgenstern R, Grafström RC, Höög JO (2008) Reduction of S-nitrosoglutathione by alcohol dehydrogenase 3 is facilitated by substrate alcohols via direct cofactor recycling and leads to GSH-controlled formation of glutathione transferase inhibitors. Biochem J 413:493–504

    Article  CAS  PubMed  Google Scholar 

  • Stamler JS, Lamas S, Fang FC (2001) Nitrosylation. The prototypic redox-based signaling mechanism. Cell 106(6):675–683

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270

    Article  CAS  PubMed  Google Scholar 

  • Svensson BE (1993) Thiols as peroxidase substrates. Free Radic Biol Med 14(2):167–175

    Article  CAS  PubMed  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Google Scholar 

  • Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60:795–804

    Article  CAS  PubMed  Google Scholar 

  • Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V, Molassiotis A (2012) Oxidative and nitrosative-based signaling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant J 72:585–599

    Article  CAS  PubMed  Google Scholar 

  • Terrile MC, París R, Calderón-Villalobos LIA, Iglesias MJ, Lamattina L, Estelle M, Casalongué CA (2012) Nitric oxide influences auxin signaling through S-nitrosylation of the Arabidopsis transport inhibitor response 1 auxin receptor. Plant J 70(3):492–500

    Google Scholar 

  • Trivedi MV, Laurence JS, Siahaan TJ (2009) The role of thiols and disulfides in protein chemical and physical stability. Curr Protein Pept Sci 10(6):614–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo M, Alvarez B, Radi R (2016) One- and two-electron oxidation of thiols: mechanisms, kinetics and biological fates. Free Radic Res 50(2):150–171

    Article  CAS  PubMed  Google Scholar 

  • Wang YQ, Feechan A, Yun BW, Shafiei R, Hofmann A, Taylor P, Xue P, Yang FQ, Xie ZS, Pallas JA, Chu CC, Loake GJ (2009a) S-nitrosylation of AtSABP3 antagonizes the expression of plant immunity. J Biol Chem 284(4):2131–2137

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Tsuda K, Sato M, Cohen JD, Katagiri F, Glazebrook J (2009b) Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against Pseudomonas syringae. PLoS Pathog 5:e1000301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang W-Q, Møller IM, Song S-Q (2012) Proteomic analysis of embryonic axis of Pisum sativum seeds during germination and identification of proteins associated with loss of desiccation tolerance. J Proteome 17:68–86

    Article  CAS  Google Scholar 

  • Winterbourn CC, Metodiewa D (1999) Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic Biol Med 27(3):322–328

    Article  CAS  PubMed  Google Scholar 

  • Woo HA, Jeong W, Chang TS, Park KJ, Park SJ, Yang JS, Rhee SG (2005) Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J Biol Chem 280:3125–3128

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Kole S, Precht P, Pazin MJ, Bernier M (2009) S-glutathionylation impairs signal transducer and activator of transcription 3 activation and signaling. Endocrinology 150:1122–1131

    Article  CAS  PubMed  Google Scholar 

  • Yun BW, Feechan A, Yin M, Saidi NB, Le Bihan T, Yu M, Moore JW, Kang JG, Kwon E, Spoel SH, Pallas JA, Loake GJ (2011) S-nitrosylation of NADPH oxidase regulates cell death in plant immunity. Nature 478(7368):264–268

    Article  CAS  PubMed  Google Scholar 

  • Zaffagnini M, Bedhomme M, Groni H, Marchand CH, Puppo C, Gontero B, Cassier-Chauvat C, Decottingnies P, Lamaire SD (2012a) Glutathinonylation in the photosynthetic model organism Chlamydomonas reinhardtii: a proteomic survey. Mol Cell Proteomics 11(2):M111.014142

    Article  PubMed  CAS  Google Scholar 

  • Zaffagnini M, Bedhomme M, Marchand CH, Couturier JR, Gao XH, Rouhier N, Trost P, Lemaire SD (2012b) Glutaredoxin S12: unique properties for redox signaling. Antioxid Redox Signal 16:17–32

    Article  CAS  PubMed  Google Scholar 

  • Zaffagnini M, Bedhomme M, Marchard AH, Morisse S, Trost P, Lemaire S (2012c) Redox regulation in photosynthetic organisms: focus on glutathionylation. Antioxid Redox Signal 16(6):567–586

    Article  CAS  PubMed  Google Scholar 

  • Zaffagnini M, Fermani S, Costa A, Lemaire SD, Trost P (2013) Plant cytoplasmic GAPDH: redox post-translational modifications and moonlighting properties. Front Plant Sci 4:450

    Article  PubMed  PubMed Central  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2012) Redox state of low-molecular-weight thiols and disulphides during somatic embryogenesis of salt-treated suspension cultures of Dactylis glomerata L. Free Radic Res 46:656–664

    Article  CAS  PubMed  Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14(4):7405–7432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Xu Y, Joseph J, Kalyanaraman B (2008) Influence of intramolecular electron transfer mechanism in biological nitration, nitrosation, and oxidation of redox-sensitive amino acids. Methods Enzymol 440:65–94

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Professor Barbara Zagdańska for critical reading the manuscript and valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Gietler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gietler, M., Nykiel, M. (2017). Involvement of Thiol-Based Mechanisms in Plant Growth, Development, and Stress Tolerance. In: Hossain, M., Mostofa, M., Diaz-Vivancos, P., Burritt, D., Fujita, M., Tran, LS. (eds) Glutathione in Plant Growth, Development, and Stress Tolerance. Springer, Cham. https://doi.org/10.1007/978-3-319-66682-2_3

Download citation

Publish with us

Policies and ethics