Skip to main content

Modulation of Post-Stroke Plasticity and Regeneration by Stem Cell Therapy and Exogenic Factors

  • Chapter
  • First Online:
Cellular and Molecular Approaches to Regeneration and Repair

Abstract

Revascularization therapy in the acute post-stroke phase nowadays is reducing the grade of disability and mortality after cerebral ischemia. Post-acute to chronic therapeutic strategies in the phase of irreversible brain parenchyma damage showed until now controversial results in pre-clinical studies: currently there are no effective treatment strategies apart from neurological rehabilitation aiming at restoration of functional post-ischemic deficits.

Spontaneous functional recovery appears immediately after stroke and was proven to correlate with the endogenous regeneration potential represented by rewiring of neuronal circuits through promotion of dendritic and axonal sprouting, improving axonal function, synaptogenesis, neurogenesis, and angiogenesis. These observations have led to numerous preclinical studies investigating a new therapeutic direction after stroke, the neurovascular restoration impacting stroke recovery potential.

This chapter summarizes achievements to date, current challenges and ongoing research in the field of regenerative processes after ischemic stroke, focusing on the formation of functional anatomical pathways responsible for enhanced recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AQP:

Aquaporin

ATSC:

Adipose-tissue stem cell

BBB:

Blood-brain barrier

BDNF:

Brain-derived neurotrophic factor

BMSC:

Bone-marrow derived stem cell

BrdU:

5-Bromo-2′-deoxyuridine

CCL2:

C-C chemokine ligand 2

CCR2:

C-C chemokine receptor type 2

CM:

Conditioned medium

CNS:

Central nervous system

DCX:

Doublecortin

EC:

Endothelial cell

EPC:

Endothelial progenitor cell

Epo:

Erythropoietin

ERK:

Extracellular signal-regulated kinase

ESC:

Embryonic stem cell

GABA:

Gamma aminobutyric acid

GFAP:

Glial fibrillary acidic protein

HIF-1:

Hypoxia-inducible factor-1

HuNu:

Human nuclear antigen

IL:

Interleukin

LTD:

Long term depression

LTP:

Long term potentiation

LV:

Lateral ventricle

MAPK:

Mitogen activated protein kinase

MMP:

Matrix metalloproteinase

NMDA:

N-methyl-D-aspartate

NPC:

Neural progenitor cell

NO:

Nitric oxide

NSC:

Neural stem cell

PI3K:

Phosphoinositide 3-kinase

Robo:

Roundabout protein

SEM:

Standard error of the mean

SGZ:

Subgranular zone

STDP:

Spike timing depending plasticity

SVZ:

Subventricular zone

TPEN:

N,N,N′,N′-tetrakis-(2-pyridylmethyl)ethylenediamine

TSP:

Thrombospondin

TuJ1:

Neuron-specific class III beta-tubulin

UCBC:

Umbilical cord blood stem cell

VCAM-1:

Vascular cell adhesion molecule 1

VEGF:

Vascular endothelial growth factor

VLA-4:

Very large antigen-4

Zn:

Zinc

Zn2+ :

Ionic zinc

References

  1. von Constantin M. (1853-1930), neurobiologic philosopher. JAMA. 1970;211(6):1003–4.

    Article  Google Scholar 

  2. Pribram KH, Spinelli DN, Reitz SL. The effects of radical disconnexion of occipital and temporal cortex on visual behaviour of monkeys. Brain. 1969;92(2):301–12.

    Article  CAS  PubMed  Google Scholar 

  3. Seshadri S, Wolf PA. Lifetime risk of stroke and dementia: current concepts, and estimates from the Framingham Study. Lancet Neurol. 2007;6(12):1106–14.

    Article  PubMed  Google Scholar 

  4. Payne BR, Lomber SG. Reconstructing functional systems after lesions of cerebral cortex. Nat Rev Neurosci. 2001;2(12):911–9.

    Article  CAS  PubMed  Google Scholar 

  5. Carmichael ST. Plasticity of cortical projections after stroke. Neuroscientist. 2003;9(1):64–75.

    Article  PubMed  Google Scholar 

  6. Carmichael ST, Wei L, Rovainen CM, Woolsey TA. New patterns of intracortical projections after focal cortical stroke. Neurobiol Dis. 2001;8(5):910–22.

    Article  CAS  PubMed  Google Scholar 

  7. Rossini PM, Calautti C, Pauri F, Baron JC. Post-stroke plastic reorganisation in the adult brain. Lancet Neurol. 2003;2(8):493–502.

    Article  PubMed  Google Scholar 

  8. Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, et al. Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A. 2001;98(8):4710–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–e220.

    Article  PubMed  Google Scholar 

  10. Lo EHA. new penumbra: transitioning from injury into repair after stroke. Nat Med. 2008;14(5):497–500.

    Article  CAS  PubMed  Google Scholar 

  11. Busch HJ, Buschmann IR, Mies G, Bode C, Hossmann KA. Arteriogenesis in hypoperfused rat brain. J Cereb Blood Flow Metab. 2003;23(5):621–8.

    Article  PubMed  Google Scholar 

  12. Cramer SC, Chopp M. Recovery recapitulates ontogeny. Trends Neurosci. 2000;23(6):265–71.

    Article  CAS  PubMed  Google Scholar 

  13. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20.

    Article  PubMed  CAS  Google Scholar 

  14. Balami JS, Sutherland BA, Edmunds LD, Grunwald IQ, Neuhaus AA, Hadley G, et al. A systematic review and meta-analysis of randomized controlled trials of endovascular thrombectomy compared with best medical treatment for acute ischemic stroke. Int J Stroke. 2015;10(8):1168–78.

    PubMed  PubMed Central  Google Scholar 

  15. Ginsberg MD, Pulsinelli WA. The ischemic penumbra, injury thresholds, and the therapeutic window for acute stroke. Ann Neurol. 1994;36(4):553–4.

    Article  CAS  PubMed  Google Scholar 

  16. Wahlgren NG, Ahmed N. Neuroprotection in cerebral ischaemia: facts and fancies--the need for new approaches. Cerebrovasc Dis. 2004;17(Suppl 1):153–66.

    CAS  PubMed  Google Scholar 

  17. Repici M, Mariani J, Borsello T. Neuronal death and neuroprotection: a review. Methods Mol Biol. 2007;399:1–14.

    Article  CAS  PubMed  Google Scholar 

  18. Ferrer I. Apoptosis: future targets for neuroprotective strategies. Cerebrovasc Dis. 2006;21(Suppl 2):9–20.

    Article  PubMed  Google Scholar 

  19. Gill R, Andine P, Hillered L, Persson L, Hagberg H. The effect of MK-801 on cortical spreading depression in the penumbral zone following focal ischaemia in the rat. J Cereb Blood Flow Metab. 1992;12(3):371–9.

    Article  CAS  PubMed  Google Scholar 

  20. Iijima T, Mies G, Hossmann KA. Repeated negative DC deflections in rat cortex following middle cerebral artery occlusion are abolished by MK-801: effect on volume of ischemic injury. J Cereb Blood Flow Metab. 1992;12(5):727–33.

    Article  CAS  PubMed  Google Scholar 

  21. Griesdale DE, Honey CR. Aquaporins and brain edema. Surg Neurol. 2004;61(5):418–21.

    Article  PubMed  Google Scholar 

  22. Hirt L, Ternon B, Price M, Mastour N, Brunet JF, Badaut J. Protective role of early aquaporin 4 induction against postischemic edema formation. J Cereb Blood Flow Metab. 2009;29(2):423–33.

    Article  CAS  PubMed  Google Scholar 

  23. Endres M, Engelhardt B, Koistinaho J, Lindvall O, Meairs S, Mohr JP, et al. Improving outcome after stroke: overcoming the translational roadblock. Cerebrovasc Dis. 2008;25(3):268–78.

    Article  PubMed  Google Scholar 

  24. Stroemer RP, Rothwell NJ. Cortical protection by localized striatal injection of IL-1ra following cerebral ischemia in the rat. J Cereb Blood Flow Metab. 1997;17(6):597–604.

    Article  CAS  PubMed  Google Scholar 

  25. Savitz SI, Fisher M. NXY-059 for the treatment of stroke. N Engl J Med. 2007;357(21):2198. author reply -9.

    Article  CAS  PubMed  Google Scholar 

  26. Savitz SI. A critical appraisal of the NXY-059 neuroprotection studies for acute stroke: a need for more rigorous testing of neuroprotective agents in animal models of stroke. Exp Neurol. 2007;205(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  27. Gould E, Reeves AJ, Graziano MS, Gross CG. Neurogenesis in the neocortex of adult primates. Science. 1999;286(5439):548–52.

    Article  CAS  PubMed  Google Scholar 

  28. Gould E, Beylin A, Tanapat P, Reeves A, Shors TJ. Learning enhances adult neurogenesis in the hippocampal formation. Nat Neurosci. 1999;2(3):260–5.

    Article  CAS  PubMed  Google Scholar 

  29. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke. 1994;25(9):1794–8.

    Article  CAS  PubMed  Google Scholar 

  30. Stroemer RP, Kent TA, Hulsebosch CE. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke. 1995;26(11):2135–44.

    Article  CAS  PubMed  Google Scholar 

  31. Lois C, Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science. 1994;264(5162):1145–8.

    Article  CAS  PubMed  Google Scholar 

  32. Clark SG, Chiu C. C. elegans ZAG-1, a Zn-finger-homeodomain protein, regulates axonal development and neuronal differentiation. Development. 2003;130(16):3781–94.

    Article  CAS  PubMed  Google Scholar 

  33. Pleasure SJ, Collins AE, Lowenstein DH. Unique expression patterns of cell fate molecules delineate sequential stages of dentate gyrus development. J Neurosci. 2000;20(16):6095–105.

    CAS  PubMed  Google Scholar 

  34. Gage R. How Old Brains Got New Neurons. Cell. 2016;167(4):875–9.

    Article  CAS  PubMed  Google Scholar 

  35. Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J. Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol. 1998;36(2):249–66.

    Article  CAS  PubMed  Google Scholar 

  36. Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone. J Neurosci. 2002;22(3):629–34.

    CAS  PubMed  Google Scholar 

  37. Gritti A, Bonfanti L, Doetsch F, Caille I, Alvarez-Buylla A, Lim DA, et al. Multipotent neural stem cells reside into the rostral extension and olfactory bulb of adult rodents. J Neurosci. 2002;22(2):437–45.

    CAS  PubMed  Google Scholar 

  38. Yan YP, Sailor KA, Lang BT, Park SW, Vemuganti R, Dempsey RJ. Monocyte chemoattractant protein-1 plays a critical role in neuroblast migration after focal cerebral ischemia. J Cereb Blood Flow Metab. 2007;27(6):1213–24.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang R, Zhang Z, Wang L, Wang Y, Gousev A, Zhang L, et al. Activated neural stem cells contribute to stroke-induced neurogenesis and neuroblast migration toward the infarct boundary in adult rats. J Cereb Blood Flow Metab. 2004;24(4):441–8.

    Article  PubMed  Google Scholar 

  40. Zhang L, Zhang ZG, Zhang RL, Lu M, Adams J, Elliott PJ, et al. Postischemic (6-Hour) treatment with recombinant human tissue plasminogen activator and proteasome inhibitor PS-519 reduces infarction in a rat model of embolic focal cerebral ischemia. Stroke. 2001;32(12):2926–31.

    Article  CAS  PubMed  Google Scholar 

  41. Dempsey RJ, Sailor KA, Bowen KK, Tureyen K, Vemuganti R. Stroke-induced progenitor cell proliferation in adult spontaneously hypertensive rat brain: effect of exogenous IGF-1 and GDNF. J Neurochem. 2003;87(3):586–97.

    Article  CAS  PubMed  Google Scholar 

  42. Zhu Y, Sun Y, Xie L, Jin K, Sheibani N, Greenberg DA. Hypoxic induction of endoglin via mitogen-activated protein kinases in mouse brain microvascular endothelial cells. Stroke. 2003;34(10):2483–8.

    Article  CAS  PubMed  Google Scholar 

  43. Iwai M, Sato K, Omori N, Nagano I, Manabe Y, Shoji M, et al. Three steps of neural stem cells development in gerbil dentate gyrus after transient ischemia. J Cereb Blood Flow Metab. 2002;22(4):411–9.

    Article  CAS  PubMed  Google Scholar 

  44. Tsai TH, CH L, Wallace CG, Chang WN, Chen SF, Huang CR, et al. Erythropoietin improves long-term neurological outcome in acute ischemic stroke patients: a randomized, prospective, placebo-controlled clinical trial. Crit Care. 2015;19:49.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tsai PT, Ohab JJ, Kertesz N, Groszer M, Matter C, Gao J, et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci. 2006;26(4):1269–74.

    Article  CAS  PubMed  Google Scholar 

  46. Wang Y, Jin K, Mao XO, Xie L, Banwait S, Marti HH, et al. VEGF-overexpressing transgenic mice show enhanced post-ischemic neurogenesis and neuromigration. J Neurosci Res. 2007;85(4):740–7.

    Article  CAS  PubMed  Google Scholar 

  47. Thored P, Arvidsson A, Cacci E, Ahlenius H, Kallur T, Darsalia V, et al. Persistent production of neurons from adult brain stem cells during recovery after stroke. Stem Cells. 2006;24(3):739–47.

    Article  CAS  PubMed  Google Scholar 

  48. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002;8(9):963–70.

    Article  CAS  PubMed  Google Scholar 

  49. Zhao BQ, Wang S, Kim HY, Storrie H, Rosen BR, Mooney DJ, et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat Med. 2006;12(4):441–5.

    Article  CAS  PubMed  Google Scholar 

  50. Wang L, Zhang ZG, Zhang RL, Gregg SR, Hozeska-Solgot A, LeTourneau Y, et al. Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration. J Neurosci. 2006;26(22):5996–6003.

    Article  CAS  PubMed  Google Scholar 

  51. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–60.

    Article  CAS  PubMed  Google Scholar 

  52. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9(6):677–84.

    Article  CAS  PubMed  Google Scholar 

  53. Hermann DM, Zechariah A. Implications of vascular endothelial growth factor for postischemic neurovascular remodeling. J Cereb Blood Flow Metab. 2009;29(10):1620–43.

    Article  CAS  PubMed  Google Scholar 

  54. Carmeliet P. Blood vessels and nerves: common signals, pathways and diseases. Nat Rev Genet. 2003;4(9):710–20.

    Article  CAS  PubMed  Google Scholar 

  55. Lambrechts D, Storkebaum E, Morimoto M, Del-Favero J, Desmet F, Marklund SL, et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat Genet. 2003;34(4):383–94.

    Article  CAS  PubMed  Google Scholar 

  56. Simons M, Gordon E, Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol. 2016;17(10):611–25.

    Article  CAS  PubMed  Google Scholar 

  57. Seylaz J, Charbonne R, Nanri K, Von Euw D, Borredon J, Kacem K, et al. Dynamic in vivo measurement of erythrocyte velocity and flow in capillaries and of microvessel diameter in the rat brain by confocal laser microscopy. J Cereb Blood Flow Metab. 1999;19(8):863–70.

    Article  CAS  PubMed  Google Scholar 

  58. Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, et al. Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol. 2000;156(3):965–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest. 2000;106(7):829–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stanfield BB, O’Leary DD, Fricks C. Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature. 1982;298(5872):371–3.

    Article  CAS  PubMed  Google Scholar 

  61. Stanfield BB, O’Leary DD. Fetal occipital cortical neurones transplanted to the rostral cortex can extend and maintain a pyramidal tract axon. Nature. 1985;313(5998):135–7.

    Article  CAS  PubMed  Google Scholar 

  62. Stanfield BB. The development of the corticospinal projection. Prog Neurobiol. 1992;38(2):169–202.

    Article  CAS  PubMed  Google Scholar 

  63. Carmichael ST. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol. 2006;59(5):735–42.

    Article  CAS  PubMed  Google Scholar 

  64. Mohajerani MH, Aminoltejari K, Murphy TH. Targeted mini-strokes produce changes in interhemispheric sensory signal processing that are indicative of disinhibition within minutes. Proc Natl Acad Sci U S A. 2011;108(22):E183–91.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Biernaskie J, Chernenko G, Corbett D. Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci. 2004;24(5):1245–54.

    Article  CAS  PubMed  Google Scholar 

  66. Papadopoulos CM, Tsai SY, Alsbiei T, O’Brien TE, Schwab ME, Kartje GL. Functional recovery and neuroanatomical plasticity following middle cerebral artery occlusion and IN-1 antibody treatment in the adult rat. Ann Neurol. 2002;51(4):433–41.

    Article  PubMed  Google Scholar 

  67. Seymour AB, Andrews EM, Tsai SY, Markus TM, Bollnow MR, Brenneman MM, et al. Delayed treatment with monoclonal antibody IN-1 1 week after stroke results in recovery of function and corticorubral plasticity in adult rats. J Cereb Blood Flow Metab. 2005;25(10):1366–75.

    Article  CAS  PubMed  Google Scholar 

  68. Buchli AD, Schwab ME. Inhibition of Nogo: a key strategy to increase regeneration, plasticity and functional recovery of the lesioned central nervous system. Ann Med. 2005;37(8):556–67.

    Article  CAS  PubMed  Google Scholar 

  69. Ding G, Jiang Q, Li L, Zhang L, Zhang ZG, Ledbetter KA, et al. Angiogenesis detected after embolic stroke in rat brain using magnetic resonance T2*WI. Stroke. 2008;39(5):1563–8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wiessner C, Bareyre FM, Allegrini PR, Mir AK, Frentzel S, Zurini M, et al. Anti-Nogo-A antibody infusion 24 hours after experimental stroke improved behavioral outcome and corticospinal plasticity in normotensive and spontaneously hypertensive rats. J Cereb Blood Flow Metab. 2003;23(2):154–65.

    Article  CAS  PubMed  Google Scholar 

  71. Greenberg DA, Jin K. From angiogenesis to neuropathology. Nature. 2005;438(7070):954–9.

    Article  CAS  PubMed  Google Scholar 

  72. Grutzendler J, Kasthuri N, Gan WB. Long-term dendritic spine stability in the adult cortex. Nature. 2002;420(6917):812–6.

    Article  CAS  PubMed  Google Scholar 

  73. Corbett D, Giles T, Evans S, McLean J, Biernaskie J. Dynamic changes in CA1 dendritic spines associated with ischemic tolerance. Exp Neurol. 2006;202(1):133–8.

    Article  CAS  PubMed  Google Scholar 

  74. Brown CE, Li P, Boyd JD, Delaney KR, Murphy TH. Extensive turnover of dendritic spines and vascular remodeling in cortical tissues recovering from stroke. J Neurosci. 2007;27(15):4101–9.

    Article  CAS  PubMed  Google Scholar 

  75. Dijkhuizen RM, Ren J, Mandeville JB, Wu O, Ozdag FM, Moskowitz MA, et al. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc Natl Acad Sci U S A. 2001;98(22):12766–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shanina EV, Schallert T, Witte OW, Redecker C. Behavioral recovery from unilateral photothrombotic infarcts of the forelimb sensorimotor cortex in rats: role of the contralateral cortex. Neuroscience. 2006;139(4):1495–506.

    Article  CAS  PubMed  Google Scholar 

  77. Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, et al. Extensive cortical rewiring after brain injury. J Neurosci. 2005;25(44):10167–79.

    Article  CAS  PubMed  Google Scholar 

  78. Brown CE, Boyd JD, Murphy TH. Longitudinal in vivo imaging reveals balanced and branch-specific remodeling of mature cortical pyramidal dendritic arbors after stroke. J Cereb Blood Flow Metab. 2010;30(4):783–91.

    Article  PubMed  Google Scholar 

  79. Brown CE, Aminoltejari K, Erb H, Winship IR, Murphy TH. In vivo voltage-sensitive dye imaging in adult mice reveals that somatosensory maps lost to stroke are replaced over weeks by new structural and functional circuits with prolonged modes of activation within both the peri-infarct zone and distant sites. J Neurosci. 2009;29(6):1719–34.

    Article  CAS  PubMed  Google Scholar 

  80. Gonzalez CL, Kolb B. A comparison of different models of stroke on behaviour and brain morphology. Eur J Neurosci. 2003;18(7):1950–62.

    Article  CAS  PubMed  Google Scholar 

  81. Rowntree S, Kolb B. Blockade of basic fibroblast growth factor retards recovery from motor cortex injury in rats. Eur J Neurosci. 1997;9(11):2432–41.

    Article  CAS  PubMed  Google Scholar 

  82. Mostany R, Portera-Cailliau C. Absence of large-scale dendritic plasticity of layer 5 pyramidal neurons in peri-infarct cortex. J Neurosci. 2011;31(5):1734–8.

    Article  CAS  PubMed  Google Scholar 

  83. David S, Aguayo AJ. Axonal elongation into peripheral nervous system “bridges” after central nervous system injury in adult rats. Science. 1981;214(4523):931–3.

    Article  CAS  PubMed  Google Scholar 

  84. Schwab ME, Caroni P. Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J Neurosci. 1988;8(7):2381–93.

    CAS  PubMed  Google Scholar 

  85. Huttenlocher PR, de Courten C. The development of synapses in striate cortex of man. Hum Neurobiol. 1987;6(1):1–9.

    CAS  PubMed  Google Scholar 

  86. Huttenlocher PR. Morphometric study of human cerebral cortex development. Neuropsychologia. 1990;28(6):517–27.

    Article  CAS  PubMed  Google Scholar 

  87. Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol. 1997;387(2):167–78.

    Article  CAS  PubMed  Google Scholar 

  88. Abbott LF, Nelson SB. Synaptic plasticity: taming the beast. Nat Neurosci. 2000;3(Suppl):1178–83.

    Article  CAS  PubMed  Google Scholar 

  89. Amantea D, Russo R, Gliozzi M, Fratto V, Berliocchi L, Bagetta G, et al. Early upregulation of matrix metalloproteinases following reperfusion triggers neuroinflammatory mediators in brain ischemia in rat. Int Rev Neurobiol. 2007;82:149–69.

    Article  CAS  PubMed  Google Scholar 

  90. Rosell A, Lo EH. Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol. 2008;8(1):82–9.

    Article  CAS  PubMed  Google Scholar 

  91. Lindvall O, Kokaia Z. Stem cells in human neurodegenerative disorders--time for clinical translation? J Clin Invest. 2010;120(1):29–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bliss TM, Andres RH, Steinberg GK. Optimizing the success of cell transplantation therapy for stroke. Neurobiol Dis. 2010;37(2):275–83.

    Article  PubMed  Google Scholar 

  93. Hermann DM, Peruzzotti-Jametti L, Schlechter J, Bernstock JD, Doeppner TR, Pluchino S. Neural precursor cells in the ischemic brain - integration, cellular crosstalk, and consequences for stroke recovery. Front Cell Neurosci. 2014;8:291.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci. 2006;7(5):395–406.

    Article  CAS  PubMed  Google Scholar 

  95. Martino G, Bacigaluppi M, Peruzzotti-Jametti L. Therapeutic stem cell plasticity orchestrates tissue plasticity. Brain. 2011;134(Pt 6):1585–7.

    Article  PubMed  Google Scholar 

  96. Bacigaluppi M, Pluchino S, Peruzzotti-Jametti L, Kilic E, Kilic U, Salani G, et al. Delayed post-ischaemic neuroprotection following systemic neural stem cell transplantation involves multiple mechanisms. Brain. 2009;132(Pt 8):2239–51.

    Article  PubMed  Google Scholar 

  97. Ourednik J, Ourednik V, Lynch WP, Schachner M, Snyder EY. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat Biotechnol. 2002;20(11):1103–10.

    Article  CAS  PubMed  Google Scholar 

  98. Einstein O, Karussis D, Grigoriadis N, Mizrachi-Kol R, Reinhartz E, Abramsky O, et al. Intraventricular transplantation of neural precursor cell spheres attenuates acute experimental allergic encephalomyelitis. Mol Cell Neurosci. 2003;24(4):1074–82.

    Article  CAS  PubMed  Google Scholar 

  99. Hayase M, Kitada M, Wakao S, Itokazu Y, Nozaki K, Hashimoto N, et al. Committed neural progenitor cells derived from genetically modified bone marrow stromal cells ameliorate deficits in a rat model of stroke. J Cereb Blood Flow Metab. 2009;29(8):1409–20.

    Article  CAS  PubMed  Google Scholar 

  100. Liao JK. Statins and ischemic stroke. Atheroscler Suppl. 2002;3(1):21–5.

    Article  CAS  PubMed  Google Scholar 

  101. Prockop DJ, Olson SD. Clinical trials with adult stem/progenitor cells for tissue repair: let’s not overlook some essential precautions. Blood. 2007;109(8):3147–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726–36.

    Article  CAS  PubMed  Google Scholar 

  103. Andres RH, Horie N, Slikker W, Keren-Gill H, Zhan K, Sun G, et al. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain. Brain. 2011;134(Pt 6):1777–89.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Nudo RJ. Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol. 2006;16(6):638–44.

    Article  CAS  PubMed  Google Scholar 

  105. Carmichael ST, Archibeque I, Luke L, Nolan T, Momiy J, Li S. Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp Neurol. 2005;193(2):291–311.

    Article  CAS  PubMed  Google Scholar 

  106. Murphy TH, Corbett D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861–72.

    Article  CAS  PubMed  Google Scholar 

  107. Southwell DG, Froemke RC, Alvarez-Buylla A, Stryker MP, Gandhi SP. Cortical plasticity induced by inhibitory neuron transplantation. Science. 2010;327(5969):1145–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Reitmeir R, Kilic E, Kilic U, Bacigaluppi M, ElAli A, Salani G, et al. Post-acute delivery of erythropoietin induces stroke recovery by promoting perilesional tissue remodelling and contralesional pyramidal tract plasticity. Brain. 2011;134(Pt 1):84–99.

    Article  PubMed  Google Scholar 

  109. Reitmeir R, Kilic E, Reinboth BS, Guo Z, ElAli A, Zechariah A, et al. Vascular endothelial growth factor induces contralesional corticobulbar plasticity and functional neurological recovery in the ischemic brain. Acta Neuropathol. 2012;123(2):273–84.

    Article  CAS  PubMed  Google Scholar 

  110. Andres RH, Choi R, Steinberg GK, Guzman R. Potential of adult neural stem cells in stroke therapy. Regen Med. 2008;3(6):893–905.

    Article  PubMed  Google Scholar 

  111. Mosher KI, Andres RH, Fukuhara T, Bieri G, Hasegawa-Moriyama M, He Y, et al. Neural progenitor cells regulate microglia functions and activity. Nat Neurosci. 2012;15(11):1485–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Guzman R, De Los Angeles A, Cheshier S, Choi R, Hoang S, Liauw J, et al. Intracarotid injection of fluorescence activated cell-sorted CD49d-positive neural stem cells improves targeted cell delivery and behavior after stroke in a mouse stroke model. Stroke. 2008;39(4):1300–6.

    Article  PubMed  Google Scholar 

  113. Andres RH, Choi R, Pendharkar AV, Gaeta X, Wang N, Nathan JK, et al. The CCR2/CCL2 interaction mediates the transendothelial recruitment of intravascularly delivered neural stem cells to the ischemic brain. Stroke. 2011;42(10):2923–31.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Rosenblum S, Smith TN, Wang N, Chua JY, Westbroek E, Wang K, et al. BDNF pretreatment of human embryonic-derived neural stem cells improves cell survival and functional recovery after transplantation in hypoxic-ischemic stroke. Cell Transplant. 2015;24(12):2449–61.

    Article  PubMed  Google Scholar 

  115. Steinberg GK, Kondziolka D, Wechsler LR, Lunsford LD, Coburn ML, Billigen JB, et al. Clinical outcomes of transplanted modified bone marrow-derived mesenchymal stem cells in stroke: a phase 1/2a study. Stroke. 2016;47(7):1817–24.

    Article  PubMed  Google Scholar 

  116. Garbuzova-Davis S, Haller E, Lin R, Borlongan CV. Intravenously transplanted human bone marrow endothelial progenitor cells engraft within brain capillaries, preserve mitochondrial morphology, and display pinocytotic activity toward blood-brain barrier repair in ischemic stroke rats. Stem Cells. 2017;35(5):1246–58.

    Article  CAS  PubMed  Google Scholar 

  117. Di Santo S, Yang Z, Wyler von Ballmoos M, Voelzmann J, Diehm N, Baumgartner I, et al. Novel cell-free strategy for therapeutic angiogenesis: in vitro generated conditioned medium can replace progenitor cell transplantation. PLoS One. 2009;4(5):e5643.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Rosell A, Morancho A, Navarro-Sobrino M, Martinez-Saez E, Hernandez-Guillamon M, Lope-Piedrafita S, et al. Factors secreted by endothelial progenitor cells enhance neurorepair responses after cerebral ischemia in mice. PLoS One. 2013;8(9):e73244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Di Santo S, Widmer HR. Paracrine factors for neurodegenerative disorders: special emphasis on Parkinson’s disease. Neural Regen Res. 2016;11(4):570–1.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Di Santo S, Seiler S, Fuchs AL, Staudigl J, Widmer HR. The secretome of endothelial progenitor cells promotes brain endothelial cell activity through PI3-kinase and MAP-kinase. PLoS One. 2014;9(4):e95731.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wang J, Chen Y, Yang Y, Xiao X, Chen S, Zhang C, et al. Endothelial progenitor cells and neural progenitor cells synergistically protect cerebral endothelial cells from Hypoxia/reoxygenation-induced injury via activating the PI3K/Akt pathway. Mol Brain. 2016;9:12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Di Santo S, Fuchs AL, Periasamy R, Seiler S, Widmer HR. The cytoprotective effects of human endothelial progenitor cell-conditioned medium against an ischemic insult are not dependent on VEGF and IL-8. Cell Transplant. 2016;25(4):735–47.

    Article  PubMed  Google Scholar 

  123. Andres RH, Ducray AD, Andereggen L, Hohl T, Schlattner U, Wallimann T, et al. The effects of creatine supplementation on striatal neural progenitor cells depend on developmental stage. Amino Acids. 2016;48(8):1913–27.

    Article  CAS  PubMed  Google Scholar 

  124. Hiu T, Farzampour Z, Paz JT, Wang EH, Badgely C, Olson A, et al. Enhanced phasic GABA inhibition during the repair phase of stroke: a novel therapeutic target. Brain. 2016;139(Pt 2):468–80.

    Article  PubMed  Google Scholar 

  125. Frederickson CJ, Koh JY, Bush AI. The neurobiology of zinc in health and disease. Nat Rev Neurosci. 2005;6(6):449–62.

    Article  CAS  PubMed  Google Scholar 

  126. Bitanihirwe BK, Cunningham MG. Zinc: the brain’s dark horse. Synapse. 2009;63(11):1029–49.

    Article  CAS  PubMed  Google Scholar 

  127. Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW. The role of zinc in selective neuronal death after transient global cerebral ischemia. Science. 1996;272(5264):1013–6.

    Article  CAS  PubMed  Google Scholar 

  128. Land PW, Aizenman E. Zinc accumulation after target loss: an early event in retrograde degeneration of thalamic neurons. Eur J Neurosci. 2005;21(3):647–57.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Sensi SL, Paoletti P, Bush AI, Sekler I. Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci. 2009;10(11):780–91.

    Article  CAS  PubMed  Google Scholar 

  130. Maret W. Analyzing free zinc(II) ion concentrations in cell biology with fluorescent chelating molecules. Metallomics: Integrated Biometal. Science. 2015;7(2):202–11.

    CAS  Google Scholar 

  131. Pan E, Zhang XA, Huang Z, Krezel A, Zhao M, Tinberg CE, et al. Vesicular zinc promotes presynaptic and inhibits postsynaptic long-term potentiation of mossy fiber-CA3 synapse. Neuron. 2011;71(6):1116–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang F, Ma XL, Wang YX, He CC, Tian K, Wang HG, et al. TPEN, a specific Zn2+ chelator, inhibits sodium dithionite and glucose deprivation (SDGD)-induced neuronal death by modulating apoptosis, glutamate signaling, and voltage-gated K+ and Na+ channels. Cell Mol Neurobiol. 2017;37(2):235–50.

    Article  CAS  PubMed  Google Scholar 

  133. Noh KM, Yokota H, Mashiko T, Castillo PE, Zukin RS, Bennett MV. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death. Proc Natl Acad Sci U S A. 2005;102(34):12230–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Bossy-Wetzel E, Talantova MV, Lee WD, Scholzke MN, Harrop A, Mathews E, et al. Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron. 2004;41(3):351–65.

    Article  CAS  PubMed  Google Scholar 

  135. Li Y, Andereggen L, Yuki K, Omura K, Yin Y, Gilbert HY, et al. Mobile zinc increases rapidly in the retina after optic nerve injury and regulates ganglion cell survival and optic nerve regeneration. Proc Natl Acad Sci U S A. 2017;114(2):E209–E18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kreisel SH, Hennerici MG, Bazner H. Pathophysiology of stroke rehabilitation: the natural course of clinical recovery, use-dependent plasticity and rehabilitative outcome. Cerebrovasc Dis. 2007;23(4):243–55.

    Article  PubMed  Google Scholar 

  137. Kreisel SH, Bazner H, Hennerici MG. Pathophysiology of stroke rehabilitation: temporal aspects of neuro-functional recovery. Cerebrovasc Dis. 2006;21(1-2):6–17.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Swiss National Science Foundation (Grants No. 31-064975.01, 31-050824, 31-102075/1, 3100A0-112529, 31003A-135565, 406340-128124, 146632, PBBEB-117034, PASMP3-123221/1, PBBEB-146099 and PBBEB-155299), the Swiss Parkinson Foundation, the HANELA Foundation, a Research Grant from the University Hospital Berne, Inselspital (RGI-84800855), the Evelyn L. Neizer Fund, and by the Department of Clinical Research at the University of Berne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert H. Andres M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andereggen, L. et al. (2018). Modulation of Post-Stroke Plasticity and Regeneration by Stem Cell Therapy and Exogenic Factors. In: Lapchak, P., Zhang, J. (eds) Cellular and Molecular Approaches to Regeneration and Repair. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-66679-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66679-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66678-5

  • Online ISBN: 978-3-319-66679-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics