Skip to main content

Epithelial Barrier Function in Gut-Bone Signaling

  • Chapter
  • First Online:
Understanding the Gut-Bone Signaling Axis

Abstract

The intestinal epithelial barrier plays an essential role in maintaining host homeostasis. The barrier regulates nutrient absorption as well as prevents the invasion of pathogenic bacteria in the host. It is composed of epithelial cells, tight junctions, and a mucus layer. Several factors, such as cytokines, diet, and diseases, can affect this barrier. These factors have been shown to increase intestinal permeability, inflammation, and translocation of pathogenic bacteria. In addition, dysregulation of the epithelial barrier can result in inflammatory diseases such as inflammatory bowel disease. Our lab and others have also shown that barrier disruption can have systemic effects including bone loss. In this chapter, we will discuss the current literature to understand the link between intestinal barrier and bone. We will discuss how inflammation, aging, dysbiosis, and metabolic diseases can affect intestinal barrier-bone link. In addition, we will highlight the current suggested mechanism between intestinal barrier and bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma TY, Anderson JM, Turner JR. Tight junctions and the intestinal barrier. Physiol Gastrointest Tract. 2012; doi:10.1016/B978-0-12-382026-6.00038-5.

  2. König J, Wells J, Cani PD, García-Ródenas CL, MacDonald T, Mercenier A, Whyte J, Troost F, Brummer R-J. Human intestinal barrier function in health and disease. Clin Transl Gastroenterol. 2016;7:e196. doi:10.1038/ctg.2016.54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Nagao-Kitamoto H, Kitamoto S, Kuffa P, Kamada N. Pathogenic role of the gut microbiota in gastrointestinal diseases. Intest Res. 2016;14:127–38. doi:10.5217/ir.2016.14.2.127.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lee SH. Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res. 2015;13:11–8. doi:10.5217/ir.2015.13.1.11.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Soler AP, Miller RD, Laughlin KV, Carp NZ, Klurfeld DM, Mullin JM. Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis. 1999;20:1425–31.

    Article  CAS  PubMed  Google Scholar 

  6. Gong J, Hu M, Huang Z, Fang K, Wang D, Chen Q, Li J, Yang D, Zou X, Xu L, Wang K, Dong H, Lu F. Berberine attenuates intestinal mucosal barrier dysfunction in type 2 diabetic rats. Front Pharmacol. 2017;8:42. doi:10.3389/fphar.2017.00042.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cox AJ, Zhang P, Bowden DW, Devereaux B, Davoren PM, Cripps AW, West NP. Increased intestinal permeability as a risk factor for type 2 diabetes. Diabetes Metab. 2016;43:2–5. doi:10.1016/j.diabet.2016.09.004.

    Google Scholar 

  8. Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, Darby TM, Weitzmann MN, Mulle JG, Gewirtz AT, Jones RM, Pacifici R. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126:2049–63. doi:10.1172/JCI86062.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Katz S, Weinerman S. Osteoporosis and gastrointestinal disease. Gastroenterol Hepatol. 2010;6:506–17.

    Google Scholar 

  10. Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011;141:769–76. doi:10.3945/jn.110.135657.

    Article  CAS  PubMed  Google Scholar 

  11. Tulstrup MVL, Christensen EG, Carvalho V, Linninge C, Ahrné S, Højberg O, Licht TR, Bahl MI. Antibiotic treatment affects intestinal permeability and gut microbial composition in Wistar rats dependent on antibiotic class. PLoS ONE. 2015; doi:10.1371/journal.pone.0144854.

  12. Al-Sadi RM, Ma TY. IL-1beta causes an increase in intestinal epithelial tight junction permeability. J Immunol. 2007;178:4641–9. 178/7/4641 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, Said HM. TNF-α-induced increase in intestinal epithelial tight junction permeability requires NF-κB activation. Am J Physiol Gastrointest Liver Physiol. 2004;286:G367–76. doi:10.1152/ajpgi.00173.2003.

    Article  CAS  PubMed  Google Scholar 

  14. Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol. 2009;124:3-20–2. doi:10.1016/j.jaci.2009.05.038.

    Article  CAS  Google Scholar 

  15. Zolotarevsky Y, Hecht G, Koutsouris A, Gonzalez DE, Quan C, Tom J, Mrsny RJ, Turner JR. A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology. 2002;123:163–72. doi:10.1053/gast.2002.34235.

    Article  CAS  PubMed  Google Scholar 

  16. Al-Sadi R, Guo S, Ye D, Ma TY. TNF-α modulation of intestinal epithelial tight junction barrier is regulated by ERK1/2 activation of Elk-1. Am J Pathol. 2013;183:1871–84. doi:10.1016/j.ajpath.2013.09.001.

    Article  CAS  PubMed  Google Scholar 

  17. Adams RB, Planchon SM, Roche JK. IFN-gamma modulation of epithelial barrier function. Time course, reversibility, and site of cytokine binding. J Immunol. 1993;150:2356–63.

    CAS  PubMed  Google Scholar 

  18. Madsen KL, Malfair D, Gray D, Doyle JS, Jewell LD, Fedorak RN. Interleukin-10 gene-deficient mice develop a primary intestinal permeability defect in response to enteric microflora. Inflamm Bowel Dis. 1999;5:262–70. doi:10.1097/00054725-199911000-00004.

    Article  CAS  PubMed  Google Scholar 

  19. Murch SH, Braegger CP, Walker-Smith JA, MacDonald TT. Location of tumour necrosis factor alpha by immunohistochemistry in chronic inflammatory bowel disease. Gut. 1993;34:1705–9. doi:10.1136/gut.34.12.1705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zeissig S, Bürgel N, Günzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke J-D. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut. 2007;56:61–72. doi:10.1136/gut.2006.094375.

    Article  CAS  PubMed  Google Scholar 

  21. Secondulfo M, de Magistris L, Fiandra R, Caserta L, Belletta M, Tartaglione MT, Riegler G, Biagi F, Corazza GR, Carratù R. Intestinal permeability in Crohn’s disease patients and their first degree relatives. Dig Liver Dis. 2001;33:680–5.

    Article  CAS  PubMed  Google Scholar 

  22. Cornick S, Tawiah A, Chadee K. Roles and regulation of the mucus barrier in the gut. Tissue Barriers. 2015;3:e982426. doi:10.4161/21688370.2014.982426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Enss ML, Cornberg M, Wagner S, Gebert A, Henrichs M, Eisenblätter R, Beil W, Kownatzki R, Hedrich HJ. Proinflammatory cytokines trigger MUC gene expression and mucin release in the intestinal cancer cell line LS180. Inflamm Res. 2000;49:162–9. doi:10.1007/s000110050576.

    Article  CAS  PubMed  Google Scholar 

  24. Biochemistr, Ahn D-H, Crawley SC, Hokari R, Kato S, Yang SC, Li J-D, Kim, Young S, Kim YS. TNF-alpha activates MUC2 transcription via NF-kappaB but inhibits via JNK activation. Cell Physiol Biochem. 2005;15:29–40.

    Article  CAS  Google Scholar 

  25. Hasnain SZ, Tauro S, Das I, Tong H, Chen AH, Jeffery PL, McDonald V, Florin TH, McGuckin MA. IL-10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells. Gastroenterology. 2013;144:357–368.e9. doi:10.1053/j.gastro.2012.10.043.

    Article  CAS  PubMed  Google Scholar 

  26. Deplancke B, Gaskins HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. Am J Clin Nutr. 2001;73:1131S–41S.

    CAS  PubMed  Google Scholar 

  27. Finnie IA, Dwarakanath AD, Taylor BA, Rhodes JM. Colonic mucin synthesis is increased by sodium butyrate. Gut. 1995;36:93–9. doi:10.1136/gut.36.1.93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burger-van Paassen N, Vincent A, Puiman PJ, van der Sluis M, Bouma J, Boehm G, van Goudoever JB, van Seuningen I, Renes IB. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem J. 2009;420:211–9. doi:10.1042/BJ20082222.

    Article  CAS  PubMed  Google Scholar 

  29. Mack DR, Michail S, Wei S, McDougall L, Hollingsworth MA. Probiotics inhibit enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression. Am J Phys. 1999;276:941–50. doi:10.1136/gut.35.4.483.

    Google Scholar 

  30. Barcelo A, Claustre J, Moro F, Chayvialle JA, Cuber JC, Plaisancié P. Mucin secretion is modulated by luminal factors in the isolated vascularly perfused rat colon. Gut. 2000;46:218–24. doi:10.1136/gut.46.2.218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li JD, Feng W, Gallup M, Kim JH, Gum J, Kim Y, Basbaum C. Activation of NF-kappaB via a Src-dependent Ras-MAPK-pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin overproduction in epithelial cells. Proc Natl Acad Sci U S A. 1998;95:5718–23. doi:10.1073/pnas.95.10.5718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep. 2010;12:319–30. doi:10.1007/s11894-010-0131-2.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rogler G, Biedermann L. Clinical utility of biomarkers in IBD. Curr Gastroenterol Rep. 2015; doi:10.1007/s11894-015-0449-x.

  34. Henriksen M, Jahnsen J, Lygren I, Stray N, Sauar J, Vatn MH, Moum B. C-reactive protein: a predictive factor and marker of inflammation in inflammatory bowel disease. Results from a prospective population-based study. Gut. 2008;57:1518–23. doi:10.1136/gut.2007.146357.

    Article  CAS  PubMed  Google Scholar 

  35. Shine B, Berghouse L, Jones JEL, Landon J. C-reactive protein as an aid in the differentiation of functional and inflammatory bowel disorders. Clin Chim Acta. 1985;148:105–9. doi:10.1016/0009-8981(85)90219-0.

    Article  CAS  PubMed  Google Scholar 

  36. Benor S, Russell GH, Silver M, Israel EJ, Yuan Q, Winter HS. Shortcomings of the inflammatory bowel disease serology 7 panel. Pediatrics. 2010;125:1230–6. doi:10.1542/peds.2009-1936.

    Article  PubMed  Google Scholar 

  37. Sun XQ, Fu XB, Zhang R-, Lü Y, Deng Q, Jiang XG, Sheng ZY. Relationship between plasma D( − )-lactate and intestinal damage after severe injuries in rats. World J Gastroenterol. 2001;7:555–8.

    Google Scholar 

  38. Vreugdenhil AC, Wolters VM, Adriaanse MP, Van den Neucker AM, van Bijnen AA, Houwen R, Buurman WA. Additional value of serum I-FABP levels for evaluating celiac disease activity in children. Scand J Gastroenterol. 2011;46:1435–41. doi:10.3109/00365521.2011.627447.

    Article  CAS  PubMed  Google Scholar 

  39. Adriaanse MPM, Tack GJ, Passos VL, Damoiseaux JGMC, Schreurs MWJ, Van Wijck K, Riedl RG, Masclee AAM, Buurman WA, Mulder CJJ, Vreugdenhil ACE. Serum I-FABP as marker for enterocyte damage in coeliac disease and its relation to villous atrophy and circulating autoantibodies. Aliment Pharmacol Ther. 2013;37:482–90. doi:10.1111/apt.12194.

    Article  CAS  PubMed  Google Scholar 

  40. Kanda T, Fujii H, Tani T, Murakami H, Suda T, Sakai Y, Ono T, Hatakeyama K. Intestinal fatty acid-binding protein is a useful diagnostic marker for mesenteric infarction in humans. Gastroenterology. 1996;110:339–43. doi:10.1053/gast.1996.v110.pm8566578.

    Article  CAS  PubMed  Google Scholar 

  41. Lewis JD. The utility of biomarkers in the diagnosis and therapy of inflammatory bowel disease. Gastroenterology. 2011;140:1817–26. doi:10.1053/j.gastro.2010.11.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lundberg J, Hellström P. Technology insight: calprotectin, lactoferrin and nitric oxide as novel markers of inflammatory bowel disease. Nat Clin Pract …. 2005;2:96–102. doi:10.1038/ncpgasthep0094.

    CAS  Google Scholar 

  43. Bunn SK, Bisset WM, Main MJ, Gray ES, Olson S, Golden BE. Fecal calprotectin: validation as a noninvasive measure of bowel inflammation in childhood inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2001;33:14–22. doi:10.1097/00005176-200107000-00003.

    Article  CAS  PubMed  Google Scholar 

  44. Derikx JP, Luyer MD, Heineman E, Buurman WA. Non-invasive markers of gut wall integrity in health and disease. World J Gastroenterol. 2010;16:5272–9. doi:10.3748/wjg.v16.i42.5272.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vojdani A. For the assessment of intestinal permeability, size matters. Altern Ther Health Med. 2013;19:12–24.

    PubMed  Google Scholar 

  46. Fink MP. Interpreting dual-sugar absorption studies in critically ill patients: what are the implications of apparent increases in intestinal permeability to hydrophilic solutes? Intensive Care Med. 1997;23:489–92. doi:10.1007/s001340050363.

    Article  CAS  PubMed  Google Scholar 

  47. Kerckhoffs APM, Akkermans LMA, De Smet MBM, Besselink MGH, Hietbrink F, Bartelink IH, Busschers WB, Samsom M, Renooij W. Intestinal permeability in irritable bowel syndrome patients: effects of NSAIDs. Dig Dis Sci. 2010;55:716–23. doi:10.1007/s10620-009-0765-9.

    Article  CAS  PubMed  Google Scholar 

  48. Olaison G, Leandersson P, Sjödahl R, Tagesson C. Intestinal permeability to polyethyleneglycol 600 in Crohn’s disease. Peroperative determination in a defined segment of the small intestine. Gut. 1988;29:196–9. doi:10.1136/gut.29.2.196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Arrieta MC, Bistritz L, Meddings JB. Alterations in intestinal permeability. Gut. 2006;55:1512–20. doi:10.1136/gut.2005.085373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Söderholm JD, Yates DA, Gareau MG, Yang P, MacQueen G, Perdue MH. Neonatal maternal separation predisposes adult rats to colonic barrier dysfunction in response to mild stress. Am J Physiol Gastrointest Liver Physiol. 2002;283:G1257–63. doi:10.1152/ajpgi.00314.2002.

    Article  PubMed  Google Scholar 

  51. Stenman LK, Holma R, Korpela R. High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids. World J Gastroenterol. 2012;18:923–9. doi:10.3748/wjg.v18.i9.923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Penders J, Thijs C, Vink C, Stelma FF, Snijders B, Kummeling I, van den Brandt PA, Stobberingh EE. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics. 2006;118:511–21. doi:10.1542/peds.2005-2824.

    Article  PubMed  Google Scholar 

  53. Weaver LT, Laker MF, Nelson R, Lucas A. Milk feeding and changes in intestinal permeability and morphology in the newborn. J Pediatr Gastroenterol Nutr. 1987;6:351–8. doi:10.1097/00005176-198705000-00008.

    Article  CAS  PubMed  Google Scholar 

  54. Bergmann KR, Liu SXL, Tian R, Kushnir A, Turner JR, Li HL, Chou PM, Weber CR, De Plaen IG. Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis. Am J Pathol. 2013;182:1596–606. doi:10.1016/j.ajpath.2013.01.013.

    Article  CAS  Google Scholar 

  55. Biol-N’garagba MC, Louisot P. Regulation of the intestinal glycoprotein glycosylation during postnatal development: role of hormonal and nutritional factors. Biochimie. 2003;85:331–52. doi:10.1016/S0300-9084(03)00039-7.

    Article  PubMed  CAS  Google Scholar 

  56. Arrieta M-C, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B. The intestinal microbiome in early life: health and disease. Front Immunol. 2014;5:427. doi:10.3389/fimmu.2014.00427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Planer JD, Peng Y, Kau AL, Blanton LV, Ndao IM, Tarr PI, Warner BB, Gordon JI. Development of the gut microbiota and mucosal IgA responses in twins and gnotobiotic mice. Nature. 2016;534:263–6. doi:10.1038/nature17940.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kurl S, Heinonen K, Lansimies E, Launiala K. Determinants of bone mineral density in prematurely born children aged 6–7 years. Acta Paediatr. 1998;87:650–3. doi:10.1111/j.1651-2227.1998.tb01525.x.

    Article  CAS  PubMed  Google Scholar 

  59. Takada M, Shimada M, Hosono S, Tauchi M, Minato S, Takahashi M, Okuni S, Takeuchi S. Trace elements and mineral requirements for very low birth weight infants in rickets of prematurity. Early Hum Dev. 1992;29:333–8. doi:10.1016/0378-3782(92)90188-M.

    Article  CAS  PubMed  Google Scholar 

  60. Halpern MD, Denning PW. The role of intestinal epithelial barrier function in the development of NEC. Tissue Barriers. 2015;3:e1000707. doi:10.1080/21688370.2014.1000707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Harris L, Senagore P, Young VB, McCabe LR. Inflammatory bowel disease causes reversible suppression of osteoblast and chondrocyte function in mice. Am J Physiol Gastrointest Liver Physiol. 2009;296:G1020–9. doi:10.1152/ajpgi.90696.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hall KE, Proctor DD, Fisher L, Rose S. American Gastroenterological Association future trends committee report: effects of aging of the population on gastroenterology practice, education, and research. Gastroenterology. 2005;129:1305–38. doi:10.1053/j.gastro.2005.06.013.

    Article  PubMed  Google Scholar 

  63. Hollander D, Tarnawski H. Aging-associated increase in intestinal absorption of macromolecules. Gerontology. 1985;31:133–7. doi:10.1159/000212694.

    Article  CAS  PubMed  Google Scholar 

  64. Ma TY, Hollander D, Dadufalza V, Krugliak P. Effect of aging and caloric restriction on intestinal permeability. Exp Gerontol. 1992;27:321–33. doi:10.1016/0531-5565(92)90059-9.

    Article  CAS  PubMed  Google Scholar 

  65. Greenwood-Van Meerveld B, Johnson AC, Grundy D. Gastrointestinal physiology and function. Handb Exp Pharmacol. 2017; doi:10.1007/164_2016_118.

  66. Mitchell EL, Davis AT, Brass K, Dendinger M, Barner R, Gharaibeh R, Fodor AA, Kavanagh K. Reduced intestinal motility, mucosal barrier function, and inflammation in aged monkeys. J Nutr Health Aging. 2017;21:354–61. doi:10.1007/s12603-016-0725-y.

    Article  CAS  PubMed  Google Scholar 

  67. Valentini L, Ramminger S, Haas V, Postrach E, Werich M, Fischer A, Koller M, Swidsinski A, Bereswill S, Lochs H, Schulzke J-D. Small intestinal permeability in older adults. Physiol Rep. 2014;2:e00281. doi:10.14814/phy2.281.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Man AL, Bertelli E, Rentini S, Regoli M, Briars G, Marini M, Watson AJM, Nicoletti C. Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin Sci. 2015;129:515–27. doi:10.1042/CS20150046.

    Article  CAS  PubMed  Google Scholar 

  69. Weng N p. Aging of the immune system: how much can the adaptive immune system adapt? Immunity. 2006;24:495–9. doi:10.1016/j.immuni.2006.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gomez CR, Gomez CR, Boehmer ED, Boehmer ED, Kovacs EJ, Kovacs EJ. The aging innate immune system. Curr Opin Immunol. 2005;17:457–62. doi:10.1016/j.coi.2005.07.013.

    Article  CAS  PubMed  Google Scholar 

  71. Ahmadi-Abhari S, Luben RN, Wareham NJ, Khaw KT. Distribution and determinants of C-reactive protein in the older adult population: European prospective investigation into cancer-norfolk study. Eur J Clin Investig. 2013;43:899–911. doi:10.1111/eci.12116.

    Article  CAS  Google Scholar 

  72. Nicoletti C. Age-associated changes of the intestinal epithelial barrier: local and systemic implications. Expert Rev Gastroenterol Hepatol. 2015;9:1467–9. doi:10.1586/17474124.2015.1092872.

    Article  CAS  PubMed  Google Scholar 

  73. Man AL, Gicheva N, Nicoletti C. The impact of ageing on the intestinal epithelial barrier and immune system. Cell Immunol. 2014;289:112–8. doi:10.1016/j.cellimm.2014.04.001.

    Article  CAS  PubMed  Google Scholar 

  74. Tran L, Greenwood-Van Meerveld B. Age-associated remodeling of the intestinal epithelial barrier. J Gerontol Ser A Biol Sci Med Sci. 2013;68:1045–56. doi:10.1093/gerona/glt106.

    Article  CAS  Google Scholar 

  75. Kovacs EJ, Gomez CR, Karavitis J, Palmer JL, Faunce DE, Ramirez L, Nomellini V. Interleukin-6 contributes to age-related alteration of cytokine production by macrophages. Mediat Inflamm. 2010; doi:10.1155/2010/475139.

  76. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–131. doi:10.1038/nature05414.

    Article  PubMed  Google Scholar 

  77. Peterson DA, Frank DN, Pace NR, Gordon JI. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe. 2008;3:417–27. doi:10.1016/j.chom.2008.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Neish AS. Microbes in gastrointestinal health and disease. Gastroenterology. 2009;136:65–80. doi:10.1053/j.gastro.2008.10.080.

    Article  PubMed  Google Scholar 

  79. Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, Nikkïla J, Monti D, Satokari R, Franceschi C, Brigidi P, de Vos W. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE. 2010; doi:10.1371/journal.pone.0010667.

  80. Hopkins MJ, Macfarlane GT. Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J Med Microbiol. 2002;51:448–54.

    Article  CAS  PubMed  Google Scholar 

  81. Woodmansey EJ, McMurdo MET, Macfarlane GT, Macfarlane S. Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol. 2004;70:6113–22. doi:10.1128/AEM.70.10.6113-6122.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol H, Doré J, Corthier G, Furet J-P. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123. doi:10.1186/1471-2180-9-123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Irwin R, Lee T, Young VB, Parameswaran N, McCabe LR. Colitis-induced bone loss is gender dependent and associated with increased inflammation. Inflamm Bowel Dis. 2013;19:1586–97. doi:10.1097/MIB.0b013e318289e17b.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Irwin R, Raehtz S, Parameswaran N, McCabe LR. Intestinal inflammation without weight loss decreases bone density and growth. Am J Phys Regul Integr Comp Phys. 2016;311:R1149–57. doi:10.1152/ajpregu.00051.2016.

    Google Scholar 

  85. Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, Maggi A, Muramatsu M, Parker MG, Gustafsson J-A. International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol Rev. 2006;58:773–81. doi:10.1124/pr.58.4.8.

    Article  CAS  PubMed  Google Scholar 

  86. Campbell-Thompson M, Lynch IJ, Bhardwaj B. Expression of estrogen receptor (ER) subtypes and ERbeta isoforms in colon cancer. Cancer Res. 2001;61:632–40.

    CAS  PubMed  Google Scholar 

  87. Konstantinopoulos PA, Kominea A, Vandoros G, Sykiotis GP, Andricopoulos P, Varakis I, Sotiropoulou-Bonikou G, Papavassiliou AG. Oestrogen receptor beta (ERbeta) is abundantly expressed in normal colonic mucosa, but declines in colon adenocarcinoma paralleling the tumour’s dedifferentiation. Eur J Cancer. 2003;39:1251–8.

    Article  CAS  PubMed  Google Scholar 

  88. Braniste V, Leveque M, Buisson-Brenac C, Bueno L, Fioramonti J, Houdeau E. Oestradiol decreases colonic permeability through oestrogen receptor beta-mediated up-regulation of occludin and junctional adhesion molecule-A in epithelial cells. J Physiol. 2009;587:3317–28. doi:10.1113/jphysiol.2009.169300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Heijmans J, Wielenga MCB, Rosekrans SL, van Lidth de Jeude JF, Roelofs J, Groothuis P, Ederveen A, de Jonge-Muller ESM, Biemond I, Hardwick JCH, D’Haens G, Hommes DW, Muncan V, van den Brink GR. Oestrogens promote tumorigenesis in a mouse model for colitis-associated cancer. Gut. 2014;63:310–6. doi:10.1136/gutjnl-2012-304216.

    Article  CAS  PubMed  Google Scholar 

  90. Braniste V, Jouault A, Gaultier E, Polizzi A, Buisson-Brenac C, Leveque M, Martin PG, Theodorou V, Fioramonti J, Houdeau E. Impact of oral bisphenol A at reference doses on intestinal barrier function and sex differences after perinatal exposure in rats. Proc Natl Acad Sci U S A. 2010;107:448–53. doi:10.1073/pnas.0907697107.

    Article  CAS  PubMed  Google Scholar 

  91. Looijer-van Langen M, Hotte N, Dieleman LA, Albert E, Mulder C, Madsen KL, Langen ML, Kl M. Estrogen receptor-β signaling modulates epithelial barrier function. Am J Physiol Gastrointest Liver Physiol. 2011;300:G621–6. doi:10.1152/ajpgi.00274.2010.

    Article  CAS  PubMed  Google Scholar 

  92. Wada-Hiraike O, Imamov O, Hiraike H, Hultenby K, Schwend T, Omoto Y, Warner M, Gustafsson J-A. Role of estrogen receptor beta in colonic epithelium. Proc Natl Acad Sci U S A. 2006;103:1605–8. doi:10.1073/pnas.0511271103.

    Article  CAS  Google Scholar 

  93. Collins FL, Rios-Arce ND, Atkinson S, Bierhalter H, Schoenherr D, Bazil JN, McCabe LR, Parameswaran N. Temporal and regional intestinal changes in permeability, tight junction, and cytokine gene expression following ovariectomy-induced estrogen deficiency. Physiol Rep. 2017;5:e13263. doi:10.14814/phy2.13263.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Dong XL, Zhang Y, Wong MS. Estrogen deficiency-induced Ca balance impairment is associated with decrease in expression of epithelial Ca transport proteins in aged female rats. Life Sci. 2014;96:26–32. doi:10.1016/j.lfs.2013.12.025.

    Article  CAS  PubMed  Google Scholar 

  95. Hoenderop JGJ, Nilius B, Bindels RJM. Calcium absorption across epithelia. Physiol Rev. 2005;85:373–422. doi:10.1152/physrev.00003.2004.

    Article  CAS  PubMed  Google Scholar 

  96. Prince RL, Smith M, Dick IM, Price RI, Webb PG, Henderson NK, Harris MM. Prevention of postmenopausal osteoporosis. A comparative study of exercise, calcium supplementation, and hormone-replacement therapy. N Engl J Med. 1991;325:1189–95. doi:10.1056/NEJM199110243251701.

    Article  CAS  PubMed  Google Scholar 

  97. Heshmati HM, Khosla S, Burritt MF, O’Fallon WM, Riggs BL. A defect in renal calcium conservation may contribute to the pathogenesis of postmenopausal osteoporosis. J Clin Endocrinol Metab. 1998;83:1916–20. doi:10.1210/jcem.83.6.4854.

    CAS  PubMed  Google Scholar 

  98. O’Loughlin PD, Morris HA. Oestrogen deficiency impairs intestinal calcium absorption in the rat. J Physiol. 1998;511(Pt 1):313–22. doi:10.1111/j.1469-7793.1998.313bi.x.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Schwartz B, Smirnoff P, Shany S, Liel Y. Estrogen controls expression and bioresponse of 1,25-dihydroxyvitamin D receptors in the rat colon. Mol Cell Biochem. 2000;203:87–93. doi:10.1023/A:1007015027268.

    Article  CAS  PubMed  Google Scholar 

  100. Gilad LA, Bresler T, Gnainsky J, Smirnoff P, Schwartz B. Regulation of vitamin D receptor expression via estrogen-induced activation of the ERK 1/2 signaling pathway in colon and breast cancer cells. J Endocrinol. 2005;185:577–92. doi:10.1677/joe.1.05770.

    Article  CAS  PubMed  Google Scholar 

  101. Gabriel SE, Tosteson AN, Leibson CL, Crowson CS, Pond GR, Hammond CS, Melton LJ. Direct medical costs attributable to osteoporotic fractures. Osteoporos Int. 2002;13:323–30. doi:10.1007/s001980200033.

    Article  CAS  PubMed  Google Scholar 

  102. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, Parameswaran N, McCabe LR. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol. 2014;229:1822–30. doi:10.1002/jcp.24636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–93. doi:10.1038/sj.embor.7400731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Sun J, Chang EB. Exploring gut microbes in human health and disease: pushing the envelope. Genes Dis. 2014;1:132–9. doi:10.1016/j.gendis.2014.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Frey A, Giannasca KT, Weltzin R, Giannasca PJ, Reggio H, Lencer WI, Neutra MR. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J Exp Med. 1996;184:1045–59.

    Article  CAS  PubMed  Google Scholar 

  106. McAuley JL, Linden SK, Png CW, King RM, Pennington HL, Gendler SJ, Florin TH, Hill GR, Korolik V, McGuckin MA. MUC1 cell surface mucin is a critical element of the mucosal barrier to infection. J Clin Invest. 2007;117:2313–24. doi:10.1172/JCI26705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Salzman NH, Ghosh D, Huttner KM, Paterson Y, Bevins CL. Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature. 2003;422:522–6. doi:10.1038/nature01520.

    Article  CAS  PubMed  Google Scholar 

  108. Ganz T. Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol. 2003;3:710–20. doi:10.1038/nri1180.

    Article  CAS  PubMed  Google Scholar 

  109. Shen L, Turner JR. Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am J Physiol Gastrointest Liver Physiol. 2006:290, G577–G282.

    Google Scholar 

  110. Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS ONE. 2010;5:e9836. doi:10.1371/journal.pone.0009836.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci. 2011;108:4554–61. doi:10.1073/pnas.1000087107.

    Article  CAS  PubMed  Google Scholar 

  112. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13:701–12. doi:10.1038/nrn3346.

    Article  CAS  PubMed  Google Scholar 

  113. Kang SS, Jeraldo PR, Kurti A, Miller ME, Cook MD, Whitlock K, Goldenfeld N, Woods JA, White BA, Chia N, Fryer JD. Diet and exercise orthogonally alter the gut microbiome and reveal independent associations with anxiety and cognition. Mol Neurodegener. 2014;9:36. doi:10.1186/1750-1326-9-36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Touchefeu Y, Montassier E, Nieman K, Gastinne T, Potel G, Bruley des Varannes S, Le Vacon F, de La Cochetière MF. Systematic review: the role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis – current evidence and potential clinical applications. Aliment Pharmacol Ther. 2014;40:409–421. n/a-n/a. doi:10.1111/apt.12878.

    CAS  PubMed  Google Scholar 

  115. Myers SP. The causes of intestinal dysbiosis. Altern Med Rev Altern Med Rev. 2004;99:180–97.

    Google Scholar 

  116. Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, Kamada N, Sakuraba A, Yajima T, Higuchi H, Inoue N, Ogata H, Iwao Y, Nomoto K, Tanaka R, Hibi T. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol. 2008;298:463–72. doi:10.1016/j.ijmm.2007.07.016.

    Article  CAS  PubMed  Google Scholar 

  117. Spiller RC. Role of infection in irritable bowel syndrome. J Gastroenterol. 2007;42(Suppl 1):41–7. doi:10.1007/s00535-006-1925-8.

    Article  PubMed  Google Scholar 

  118. Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, Moulton L, Glawe A, Wang Y, Leone V, Antonopoulos DA, Smith D, Chang EB, Ciancio MJ. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. PLoS ONE. 2014;9:e92193. doi:10.1371/journal.pone.0092193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Scher JU, Abramson SB. The microbiome and rheumatoid arthritis. Nat Rev Rheumatol. 2011;7:569. doi:10.1038/nrrheum.2011.121.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Nenci A, Becker C, Wullaert A, Gareus R, van Loo G, Danese S, Huth M, Nikolaev A, Neufert C, Madison B, Gumucio D, Neurath MF, Pasparakis M. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature. 2007;446:557–61. doi:10.1038/nature05698.

    Article  CAS  PubMed  Google Scholar 

  121. Capaldo CT, Nusrat A. Cytokine regulation of tight junctions. Biochim Biophys Acta. 2009;1788:864–71. doi:10.1016/j.bbamem.2008.08.027.

    Article  CAS  PubMed  Google Scholar 

  122. Ozaki H, Ishii K, Horiuchi H, Arai H, Kawamoto T, Okawa K, Iwamatsu A, Kita T. Cutting edge: combined treatment of TNF-alpha and IFN-gamma causes redistribution of junctional adhesion molecule in human endothelial cells. J Immunol. 1999;163:553–7.

    CAS  PubMed  Google Scholar 

  123. Youakim A, Ahdieh M. Interferon-gamma decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin. Am J Phys. 1999;276:G1279–88.

    CAS  Google Scholar 

  124. Wrzosek L, Miquel S, Noordine M-L, Bouet S, Chevalier-Curt M, Robert V, Philippe C, Bridonneau C, Cherbuy C, Robbe-Masselot C, Langella P, Thomas M. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 2013;11:61. doi:10.1186/1741-7007-11-61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, McGuckin MA, Florin THJ. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105:2420–8. doi:10.1038/ajg.2010.281.

    Article  CAS  PubMed  Google Scholar 

  126. van der Post S, Subramani DB, Backstrom M, Johansson MEV, Vester-Christensen MB, Mandel U, Bennett EP, Clausen H, Dahlen G, Sroka A, Potempa J, Hansson GC. Site-specific O-glycosylation on the MUC2 mucin protein inhibits cleavage by the Porphyromonas gingivalis secreted cysteine protease (RgpB). J Biol Chem. 2013;288:14636–46. doi:10.1074/jbc.M113.459479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Sun J, Shen X, Li Y, Guo Z, Zhu W, Zuo L, Zhao J, Gu L, Gong J, Li J. Therapeutic potential to modify the mucus barrier in inflammatory bowel disease. Forum Nutr. 2016; doi:10.3390/nu8010044.

  128. Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, Sartor BR, Aliprantis AO, Charles JF. Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci. 2016;113:E7554–63. doi:10.1073/pnas.1607235113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Villa CR, Ward WE, Comelli EM. Gut microbiota-bone axis. Crit Rev Food Sci Nutr. 2015; doi:10.1080/10408398.2015.1010034.

  130. Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Bäckhed F, Ohlsson C. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27:1357–67. doi:10.1002/jbmr.1588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Zhang K, Hornef MW, Dupont A. The intestinal epithelium as guardian of gut barrier integrity. Cell Microbiol. 2015;17:1561–1569. n/a-n/a. doi:10.1111/cmi.12501.

    Article  CAS  PubMed  Google Scholar 

  132. McCabe LR, Irwin R, Schaefer L, Britton RA. Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol. 2013;228:1793–8. doi:10.1002/jcp.24340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Collins FL, Irwin R, Bierhalter H, Schepper J, Britton RA, Parameswaran N, McCabe LR. Lactobacillus reuteri 6475 increases bone density in intact females only under an inflammatory setting. PLoS ONE. 2016;11:e0153180. doi:10.1371/journal.pone.0153180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Yan J, Charles JF. Gut microbiome and bone: to build, destroy, or both? Curr Osteoporos Rep. 2017; doi:10.1007/s11914-017-0382-z.

  135. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med. 2000;191:275–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kudo O, Fujikawa Y, Itonaga I, Sabokbar A, Torisu T, Athanasou NA. Proinflammatory cytokine (TNF?/IL-1?) induction of human osteoclast formation. J Pathol. 2002;198:220–7. doi:10.1002/path.1190.

    Article  CAS  PubMed  Google Scholar 

  137. Weitzmann MN, Pacifici R. T cells: unexpected players in the bone loss induced by estrogen deficiency and in basal bone homeostasis. Ann N Y Acad Sci. 2007;1116:360–75. doi:10.1196/annals.1402.068.

    Article  CAS  PubMed  Google Scholar 

  138. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco M-J, Léotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A. Prebiotic effects: metabolic and health benefits. Br J Nutr. 2010;104(Suppl):S1–63. doi:10.1017/S0007114510003363.

    Article  CAS  PubMed  Google Scholar 

  139. Wu RY, Abdullah M, Määttänen P, Pilar AVC, Scruten E, Johnson-Henry KC, Napper S, O’Brien C, Jones NL, Sherman PM. Protein kinase C δ signaling is required for dietary prebiotic-induced strengthening of intestinal epithelial barrier function. Sci Rep. 2017;7:40820. doi:10.1038/srep40820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. García-Vieyra MI, Del Real A, López MG. Agave fructans: their effect on mineral absorption and bone mineral content. J Med Food. 2014;17:1247–55. doi:10.1089/jmf.2013.0137.

    Article  PubMed  CAS  Google Scholar 

  141. Takahara S, Morohashi T, Sano T, Ohta A, Yamada S, Sasa R. Fructooligosaccharide consumption enhances femoral bone volume and mineral concentrations in rats. J Nutr. 2000;130:1792–5.

    CAS  PubMed  Google Scholar 

  142. Chonan O, Matsumoto K, Watanuki M. Effect of galactooligosaccharides on calcium absorption and preventing bone loss in ovariectomized rats. Biosci Biotechnol Biochem. 1995;59:236–9. doi:10.1271/bbb.59.236.

    Article  CAS  PubMed  Google Scholar 

  143. Ohta A, Uehara M, Sakai K, Takasaki M, Adlercreutz H, Morohashi T, Ishimi Y. A combination of dietary fructooligosaccharides and isoflavone conjugates increases femoral bone mineral density and equol production in ovariectomized mice. J Nutr. 2002;132:2048–54.

    CAS  PubMed  Google Scholar 

  144. Liu H-Y, Roos S, Jonsson H, Ahl D, Dicksved J, Lindberg JE, Lundh T. Effects of Lactobacillus johnsonii and Lactobacillus reuteri on gut barrier function and heat shock proteins in intestinal porcine epithelial cells. Physiol Rep. 2015;3:e12355. doi:10.14814/phy2.12355.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Zhang J, Motyl KJ, Irwin R, MacDougald OA, Britton RA, McCabe LR. Loss of bone and Wnt10b expression in male type 1 diabetic mice is blocked by the probiotic Lactobacillus reuteri. Endocrinology. 2015;156:3169–82. doi:10.1210/EN.2015-1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Bamias G, Okazawa A, Rivera-Nieves J, Arseneau KO, De La Rue SA, Pizarro TT, Cominelli F. Commensal bacteria exacerbate intestinal inflammation but are not essential for the development of murine ileitis. J Immunol. 2007;178:1809–18. 178/3/1809 [pii]

    Article  CAS  PubMed  Google Scholar 

  147. Suenaert P, Maerten P, Van Assche G, Van Driessche W, Geboes K, Bulteel V, Simaels J, Augustijns P, Ceuppens JL, Rutgeerts P, Perrier C. Effects of T cell-induced colonic inflammation on epithelial barrier function. Inflamm Bowel Dis. 2010;16:1322–31. doi: 10.1002/ibd.21211.

    Google Scholar 

  148. Utech M, Mennigen R, Bruewer M. Endocytosis and recycling of tight junction proteins in inflammation. J Biomed Biotechnol. 2010;2010:484987. doi:10.1155/2010/484987.

    Article  PubMed  CAS  Google Scholar 

  149. Suzuki T, Yoshinaga N, Tanabe S. Interleukin-6 (IL-6) regulates claudin-2 expression and tight junction permeability in intestinal epithelium. J Biol Chem. 2011;286:31263–71. doi:10.1074/jbc.M111.238147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Amasheh M, Fromm A, Krug SM, Amasheh S, Andres S, Zeitz M, Fromm M, Schulzke J-D. TNFalpha-induced and berberine-antagonized tight junction barrier impairment via tyrosine kinase, Akt and NFkappaB signaling. J Cell Sci. 2010;123:4145–55. doi:10.1242/jcs.070896.

    Article  CAS  PubMed  Google Scholar 

  151. Ye D, Guo S, Al-Sadi R, Ma TY. MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology. 2011;141:1323–33. doi:10.1053/j.gastro.2011.07.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vetrano S, Rescigno M, Cera MR, Correale C, Rumio C, Doni A, Fantini M, Sturm A, Borroni E, Repici A, Locati M, Malesci A, Dejana E, Danese S. Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology. 2008;135:173–84. doi:10.1053/j.gastro.2008.04.002.

    Article  CAS  PubMed  Google Scholar 

  153. Blair SA, Kane SV, Clayburgh DR, Turner JR. Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab Investig. 2006;863700373:191–201. doi:10.1038/labinvest.3700373.

    Article  CAS  Google Scholar 

  154. Schneider MR, Dahlhoff M, Horst D, Hirschi B, Trülzsch K, Müller-Höcker J, Vogelmann R, Allgäuer M, Gerhard M, Steininger S, Wolf E, Kolligs FT. A key role for E-cadherin in intestinal homeostasis and Paneth cell maturation. PLoS ONE. 2010;5:e14325. doi:10.1371/journal.pone.0014325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ghishan FK, Kiela PR. Advances in the understanding of mineral and bone metabolism in inflammatory bowel diseases. Am J Physiol Gastrointest Liver Physiol. 2010;300:G191–201. doi:10.1152/ajpgi.00496.2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Bianchi ML. Inflammatory bowel diseases, celiac disease, and bone. Arch Biochem Biophys. 2010;503:54–65. doi:10.1016/j.abb.2010.06.026.

    Article  CAS  PubMed  Google Scholar 

  157. Compston JE, Judd D, Crawley EO, Evans WD, Evans C, Church HA, Reid EM, Rhodes J. Osteoporosis in patients with inflammatory bowel disease. Gut. 1987;28:410–5. doi:10.1136/gut.28.4.410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Nielsen OH, Vainer B, Madsen SM, Seidelin JB, Heegaard NHH. Established and emerging biological activity markers of inflammatory bowel disease. Am J Gastroenterol. 2000;95:359–67. doi:10.1016/S0002-9270(99)00849-7.

    CAS  PubMed  Google Scholar 

  159. Daft JG, Lorenz RG. Role of the gastrointestinal ecosystem in the development of type 1 diabetes. Pediatr Diabetes. 2015;16:407–18. doi:10.1111/pedi.12282.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Paun A, Yau C, Danska JS. Immune recognition and response to the intestinal microbiome in type 1 diabetes. J Autoimmun. 2016;71:10–8. doi:10.1016/j.jaut.2016.02.004.

    Article  CAS  PubMed  Google Scholar 

  161. Gülden E, Wong FS, Wen L. The gut microbiota and type 1 diabetes. Clin Immunol. 2015;159:143–53. doi:10.1016/j.clim.2015.05.013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Vaarala O, Atkinson M A, Neu J. The “perfect storm” for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes. 2008;57:2555–62. doi:10.2337/db08-0331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Neu J, Reverte CM, Mackey AD, Liboni K, Tuhacek-Tenace LM, Hatch M, Li N, Caicedo RA, Schatz DA, Atkinson M. Changes in intestinal morphology and permeability in the biobreeding rat before the onset of type 1 diabetes. J Pediatr Gastroenterol Nutr. 2005;40:589–95.

    Article  PubMed  Google Scholar 

  164. Meddings JB, Jarand J, Urbanski SJ, Hardin J, Gall DG. Increased gastrointestinal permeability is an early lesion in the spontaneously diabetic BB rat. Am J Phys. 1999;276:G951–7.

    CAS  Google Scholar 

  165. Graham S, Courtois P, Malaisse WJ, Rozing J, Scott FW, Mowat AMI. Enteropathy precedes type 1 diabetes in the BB rat. Gut. 2004;53:1437–44. doi:10.1136/gut.2004.042481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bosi E, Molteni L, Radaelli MG, Folini L, Fermo I, Bazzigaluppi E, Piemonti L, Pastore MR, Paroni R. Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia. 2006;49:2824–7. doi:10.1007/s00125-006-0465-3.

    Article  CAS  PubMed  Google Scholar 

  167. Kuitunen M, Saukkonen T, Ilonen J, Akerblom HK, Savilahti E. Intestinal permeability to mannitol and lactulose in children with type 1 diabetes with the HLA-DQB1*02 allele. Autoimmunity. 2002;35:365–8.

    Article  CAS  PubMed  Google Scholar 

  168. Sapone A, de Magistris L, Pietzak M, Clemente MG, Tripathi A, Cucca F, Lampis R, Kryszak D, Cartenì M, Generoso M, Iafusco D, Prisco F, Laghi F, Riegler G, Carratu R, Counts D, Fasano A. Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes. 2006;55:1443–9.

    Article  CAS  PubMed  Google Scholar 

  169. Secondulfo M, Iafusco D, Carratù R, DeMagistris L, Sapone A, Generoso M, Mezzogiorno A, Sasso FC, Cartenì M, De Rosa R, Prisco F, Esposito V. Ultrastructural mucosal alterations and increased intestinal permeability in non-celiac, type I diabetic patients. Dig Liver Dis. 2004;36:35–45. doi:10.1016/j.dld.2003.09.016.

    Article  CAS  PubMed  Google Scholar 

  170. Vaarala O. Is the origin of type 1 diabetes in the gut? Immunol Cell Biol. 2012;90:271–6. doi:10.1038/icb.2011.115.

    Article  CAS  PubMed  Google Scholar 

  171. Lee AS, Gibson DL, Zhang Y, Sham HP, Vallance BA, Dutz JP. Gut barrier disruption by an enteric bacterial pathogen accelerates insulitis in NOD mice. Diabetologia. 2010;53:741–8. doi:10.1007/s00125-009-1626-y.

    Article  CAS  PubMed  Google Scholar 

  172. Hadjiyanni I, Li KK, Drucker DJ. Glucagon-like peptide-2 reduces intestinal permeability but does not modify the onset of type 1 diabetes in the nonobese diabetic mouse. Endocrinology. 2009;150:592–9. doi:10.1210/en.2008-1228.

    Article  CAS  PubMed  Google Scholar 

  173. Todd DJ, Forsberg EM, Greiner DL, Mordes JP, Rossini AA, Bortell R. Deficiencies in gut NK cell number and function precede diabetes onset in BB rats. J Immunol. 2004;172:5356–62.

    Article  CAS  PubMed  Google Scholar 

  174. Carratù R, Secondulfo M, de Magistris L, Iafusco D, Urio A, Carbone MG, Pontoni G, Cartenì M, Prisco F. Altered intestinal permeability to mannitol in diabetes mellitus type I. J Pediatr Gastroenterol Nutr. 1999;28:264–9.

    Article  PubMed  Google Scholar 

  175. Fasano A. Leaky gut and autoimmune diseases. Clin Rev Allergy Immunol. 2012;42:71–8. doi:10.1007/s12016-011-8291-x.

    Article  CAS  PubMed  Google Scholar 

  176. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485–98. doi:10.1016/j.cell.2009.09.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31:677–89. doi:10.1016/j.immuni.2009.08.020.

    Article  CAS  PubMed  Google Scholar 

  178. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, Yagita H, Ishii N, Evans R, Honda K, Takeda K. ATP drives lamina propria TH17 cell differentiation. Nature. 2008;455:808–12. doi:10.1038/nature07240.

    Article  CAS  PubMed  Google Scholar 

  179. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, Taniguchi T, Takeda K, Hori S, Ivanov II, Umesaki Y, Itoh K, Honda K. Induction of colonic regulatory T cells by indigenous clostridium species. Science. (80-. 2011;331:337–41.

    Article  CAS  PubMed  Google Scholar 

  180. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5. doi:10.1038/nature12726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, Glickman JN, Garrett WS. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. (80–. ). 2013;341:569–73.

    Article  CAS  PubMed  Google Scholar 

  182. Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, Casella G, Drew JC, Ilonen J, Knip M, Hyöty H, Veijola R, Simell T, Simell O, Neu J, Wasserfall CH, Schatz D, Atkinson MA, Triplett EW. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS ONE. 2011;6:e25792. doi:10.1371/journal.pone.0025792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. de Goffau MC, Luopajarvi K, Knip M, Ilonen J, Ruohtula T, Harkonen T, Orivuori L, Hakala S, Welling GW, Harmsen HJ, Vaarala O. Fecal microbiota composition differs between children with -cell autoimmunity and those without. Diabetes. 2013;62:1238–44. doi:10.2337/db12-0526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Bach J-F. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347:911–20. doi:10.1056/NEJMra020100.

    Article  PubMed  Google Scholar 

  185. Pozzilli P, Signore A, Williams AJK, Beales PE. NOD mouse colonies around the world- recent facts and figures. Immunol Today. 1993;14:193–6. doi:10.1016/0167-5699(93)90160-M.

    Article  CAS  PubMed  Google Scholar 

  186. Cooke A, Tonks P, Jones FM, O’shea H, Hutchings P, Fulford AJC, Dunne. Infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol. 1999;21:169–76. doi:10.1046/j.1365-3024.1999.00213.x.

    Article  CAS  PubMed  Google Scholar 

  187. Shaper AG, Phillips AN, Pocock SJ, Walker M, Macfarlane PW. Risk factors for stroke in middle aged British men. BMJ. 1991;302:1111–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Liu Q, Sundar K, Mishra PK, Mousavi G, Liu Z, Gaydo A, Alem F, Lagunoff D, Bleich D, Gause WC. Helminth infection can reduce insulitis and type 1 diabetes through CD25- and IL-10-independent mechanisms. Infect Immun. 2009;77:5347–58. doi:10.1128/IAI.01170-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Raine T, Zaccone P, Mastroeni P, Cooke A. Salmonella typhimurium infection in nonobese diabetic mice generates immunomodulatory dendritic cells able to prevent type 1 diabetes. J Immunol. 2006;177

    Google Scholar 

  190. King C, Sarvetnick N, Volchkov P, Stranges P, Avanesyan L. The incidence of type-1 diabetes in NOD mice is modulated by restricted flora not germ-free conditions. PLoS ONE. 2011;6:e17049. doi:10.1371/journal.pone.0017049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Kriegel MA, Sefik E, Hill JA, Wu H-J, Benoist C, Mathis D. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2011;108:11548–53. doi:10.1073/pnas.1108924108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Rossini AA, Williams RM, Mordes JP, Appel MC, Like AA. Spontaneous diabetes in the Gnotobiotic BB/W rat. Diabetes. 1979;28

    Google Scholar 

  193. Brugman S, Klatter FA, Visser JTJ, Wildeboer-Veloo ACM, Harmsen HJM, Rozing J, Bos NA. Antibiotic treatment partially protects against type 1 diabetes in the bio-breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia. 2006;49:2105–8. doi:10.1007/s00125-006-0334-0.

    Article  CAS  PubMed  Google Scholar 

  194. Roesch LF, Lorca GL, Casella G, Giongo A, Naranjo A, Pionzio AM, Li N, Mai V, Wasserfall CH, Schatz D, Atkinson MA, Neu J, Triplett EW. Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. ISME J. 2009;3:536–48. doi:10.1038/ismej.2009.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Brown K, Godovannyi A, Ma C, Zhang Y, Ahmadi-Vand Z, Dai C, Gorzelak MA, Chan Y, Chan JM, Lochner A, Dutz JP, Vallance BA, Gibson DL. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice. ISME J. 2016;10:321–32. doi:10.1038/ismej.2015.114.

    Article  CAS  PubMed  Google Scholar 

  196. Pellegrini S, Sordi V, Bolla AM, Saita D, Ferrarese R, Canducci F, Clementi M, Invernizzi F, Mariani A, Bonfanti R, Barera G, Testoni PA, Doglioni C, Bosi E, Piemonti L. Duodenal mucosa of patients with type 1 diabetes shows distinctive inflammatory profile and microbiota. J Clin Endocrinol Metab. 2017;102:1468–77. doi:10.1210/jc.2016-3222.

    Article  PubMed  Google Scholar 

  197. Marino E, Richards JL, McLeod KH, Stanley D, Yap YA, Knight J, McKenzie C, Kranich J, Oliveira AC, Rossello FJ, Krishnamurthy B, Nefzger CM, Macia L, Thorburn A, Baxter AG, Morahan G, Wong LH, Polo JM, Moore RJ, Lockett TJ, Clarke JM, Topping DL, Harrison LC, Mackay CR. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol. 2017;18:552–62. doi:10.1038/ni.3713.

    Article  CAS  PubMed  Google Scholar 

  198. Dolpady J, Sorini C, Di Pietro C, Cosorich I, Ferrarese R, Saita D, Clementi M, Canducci F, Falcone M. Oral probiotic VSL#3 prevents autoimmune diabetes by modulating microbiota and promoting indoleamine 2,3-dioxygenase-enriched tolerogenic intestinal environment. J Diabetes Res. 2016;2016:1–12. doi:10.1155/2016/7569431.

    Article  Google Scholar 

  199. Motyl K, McCabe LR. Streptozotocin, type 1 diabetes severity and bone. Biol Proced Online. 2009;11:296–315. doi:10.1007/s12575-009-9000-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Motyl KJ, Botolin S, Irwin R, Appledorn DM, Kadakia T, Amalfitano A, Schwartz RC, McCabe LR. Bone inflammation and altered gene expression with type I diabetes early onset. J Cell Physiol. 2009;218:575–83. doi:10.1002/jcp.21626.

    Article  CAS  PubMed  Google Scholar 

  201. Botolin S, McCabe LR. Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. Endocrinology. 2007;148:198–205. doi:10.1210/en.2006-1006.

    Article  CAS  PubMed  Google Scholar 

  202. Alberti KGMM, Zimmet P, Shaw J. The metabolic syndrome – a new worldwide definition. Lancet. 2005;366:1059–62. doi:10.1016/S0140-6736(05)67402-8.

    Article  PubMed  Google Scholar 

  203. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–72. doi:10.2337/db06-1491.

    Article  CAS  PubMed  Google Scholar 

  204. Cani PD, Bibiloni R, Knauf C, Neyrinck AM, Delzenne NM. Changes in gut microbiota control metabolic diet–induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81. doi:10.2337/db07-1403.Additional.

    Article  CAS  PubMed  Google Scholar 

  205. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091–103. doi:10.1136/gut.2008.165886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Brun P, Castagliuolo I, di Leo V, Buda A, Pinzani M, Palu G, Martines D. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 2007;292:518–25. doi:10.1152/ajpgi.00024.2006.

    Article  CAS  Google Scholar 

  207. Teixeira TFS, Collado MC, Ferreira CLLF, Bressan J, Peluzio Mdo CG. Potential mechanisms for the emerging link between obesity and increased intestinal permeability. Nutr Res. 2012;32:637–47. doi:10.1016/j.nutres.2012.07.003.

    Article  CAS  PubMed  Google Scholar 

  208. Farhadi A, Gundlapalli S, Shaikh M, Frantzides C, Harrell L, Kwasny MM, Keshavarzian A. Susceptibility to gut leakiness: a possible mechanism for endotoxaemia in non-alcoholic steatohepatitis. Liver Int. 2008;28:1026–33. doi:10.1111/j.1478-3231.2008.01723.x.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Brignardello J, Morales P, Diaz E, Romero J, Brunser O, Gotteland M. Pilot study: alterations of intestinal microbiota in obese humans are not associated with colonic inflammation or disturbances of barrier function. Aliment Pharmacol Ther. 2010;32:1307–14. doi:10.1111/j.1365-2036.2010.04475.x.

    Article  CAS  PubMed  Google Scholar 

  210. Teixeira TFS, Souza NCS, Chiarello PG, Franceschini SCC, Bressan J, Ferreira CLLF, Peluzio Mdo CG. Intestinal permeability parameters in obese patients are correlated with metabolic syndrome risk factors. Clin Nutr. 2012;31:735–40. doi:10.1016/j.clnu.2012.02.009.

    Article  CAS  PubMed  Google Scholar 

  211. Shapses SA, Sukumar D. Bone metabolism in obesity and weight loss. Annu Rev Nutr. 2012;32:287–309. doi:10.1146/annurev.nutr.012809.104655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Cao JJ. Effects of obesity on bone metabolism. J Orthop Surg Res. 2011;6:30. doi:10.1186/1749-799X-6-30.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Carnielli VP, Luijendijk IH, Van Goudoever JB, Sulkers EJ, Boerlage AA, Degenhart HJ, Sauer PJ. Structural position and amount of palmitic acid in infant formulas: effects on fat, fatty acid, and mineral balance. J Pediatr Gastroenterol Nutr. 1996;23:553–60. doi:10.1097/00005176-199612000-00007.

    Article  CAS  PubMed  Google Scholar 

  214. Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev. 2007;8:21–34. doi:10.1111/j.1467-789X.2006.00270.x.

    Article  CAS  PubMed  Google Scholar 

  215. Fukushima N, Hanada R, Teranishi H, Fukue Y, Tachibana T, Ishikawa H, Takeda S, Takeuchi Y, Fukumoto S, Kangawa K, Nagata K, Kojima M. Ghrelin directly regulates bone formation. J Bone Miner Res. 2004;20:790–8. doi:10.1359/JBMR.041237.

    Article  PubMed  CAS  Google Scholar 

  216. Dicembrini I, Mannucci E, Rotella CM. Bone: incretin hormones perceiver or receiver? Exp Diabetes Res. 2012;2012:519784. doi:10.1155/2012/519784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Narayanan Parameswaran or Laura R. McCabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rios-Arce, N.D. et al. (2017). Epithelial Barrier Function in Gut-Bone Signaling. In: McCabe, L., Parameswaran, N. (eds) Understanding the Gut-Bone Signaling Axis. Advances in Experimental Medicine and Biology, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-319-66653-2_8

Download citation

Publish with us

Policies and ethics