Skip to main content

Parallel Programming in Biological Sciences, Taking Advantage of Supercomputing in Genomics

  • Conference paper
  • First Online:
Advances in Computing (CCC 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 735))

Included in the following conference series:

Abstract

New sequencing technologies has been increasing the size of current genomes rapidly reducing its cost at the same time, those data need to be processed with efficient and innovated tools using high performance computing (HPC), but for taking advantage of nowadays supercomputers, parallel programming techniques and strategies have to be used. Plant genomes are full of Long Terminal Repeat Retrotransposons (LTR-RT), which are the most frequent repeated sequences; very important agronomical commodity such as Robusta Coffee and Maize have genomes that are composed by ~50% and ~85% respectively of this class of mobile elements, new parallel bioinformatics pipelines are making possible to use whole genomes like those in research projects, generating a lot of new information and impacting in many ways the knowledge that researchers have about them. Here we presented the utility of multi-core architectures and parallel programming for analyzing and classifying massive quantity of genomic information up to 16 times faster.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Galperin, M.Y., Koonin, E.V.: From complete genome sequence to “complete” understanding? Trends Biotechnol. 28, 398–406 (2010)

    Article  Google Scholar 

  2. Tatusova, T.: Update on genomic databases and resources at the national center for biotechnology information. In: Carugo, O., Eisenhaber, F. (eds.) Data Mining Techniques for the Life Sciences. MMB, vol. 1415, pp. 3–30. Springer, New York (2016). doi:10.1007/978-1-4939-3572-7_1

    Chapter  Google Scholar 

  3. Sener, E.F., Canatan, H., Ozkul, Y.: Recent advances in autism spectrum disorders: applications of whole exome sequencing technology. Psychiatry Investig. 13, 255–264 (2016)

    Article  Google Scholar 

  4. Ho, C.Y., Charron, P., Richard, P., Girolami, F., Van Spaendonck-Zwarts, K.Y., Pinto, Y.: Genetic advances in sarcomeric cardiomyopathies: state of the art. Cardiovasc. Res. 105, 397–408 (2015)

    Article  Google Scholar 

  5. Wang, Y., Navin, N.E.: Advances and applications of single-cell sequencing technologies. Mol. Cell 58, 598–609 (2015)

    Article  Google Scholar 

  6. Orozco, S., Jeferson, A.: Aplicación de la inteligencia artificial en la bioinformática, avances, definiciones y herramientas* Aplication of Artificial Intelligence in Bioinformatics, advances, definitions and tools. UGCiencia, pp. 159–171 (2016)

    Google Scholar 

  7. Neale, D.B., Wegrzyn, J.L., Stevens, K.A., Zimin, A.V., Puiu, D., Crepeau, M.W., Cardeno, C., Koriabine, M., Holtz-Morris, A.E., Liechty, J.D.: Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies. Genome Biol. 15, 59 (2014)

    Article  Google Scholar 

  8. Schnable, P.S., Ware, D., Fulton, R.S., Stein, J.C., Wei, F., Pasternak, S., et al.: The B73 maize genome: complexity, diversity, and dynamics. Science 80(326), 1112–1115 (2009)

    Article  Google Scholar 

  9. Monsalve, M., Castrillon, N.: Indexing GPU acceleration for solutions approximation of the Laplace equation. In: 2015 10th (10CCC), pp. 568–574 (2015)

    Google Scholar 

  10. Tabares Soto, R.: Programación paralela sobre arquitecturas heterogéneas 80 (2016)

    Google Scholar 

  11. Chaparro, C., Gayraud, T., De Souza, R.F., Domingues, D.S., Akaffou, S., Vanzela, A.L.L., De Kochko, A., Rigoreau, M., Crouzillat, D., Hamon, S., Hamon, P., Guyot, R.: Terminal-repeat retrotransposons with gAG domain in plant genomes: a new testimony on the complex world of transposable elements. Genome Biol. Evol. 7, 493–504 (2015)

    Article  Google Scholar 

  12. Guyot, R., Darré, T., Dupeyron, M., de Kochko, A., Hamon, S., Couturon, E., Crouzillat, D., Rigoreau, M., Rakotomalala, J.J., Raharimalala, N.E., Akaffou, S.D., Hamon, P.: Partial sequencing reveals the transposable element composition of Coffea genomes and provides evidence for distinct evolutionary stories. Mol. Genet. Genomics 291, 1979–1990 (2016)

    Article  Google Scholar 

  13. Beulé, T., Agbessi, M.D., Dussert, S., Jaligot, E., Guyot, R.: Genome-wide analysis of LTR-retrotransposons in oil palm. BMC Genom. 16, 1–14 (2015)

    Article  Google Scholar 

  14. Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., et al.: A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007)

    Article  Google Scholar 

  15. Witte, C.-P., Le, Q.H., Bureau, T., Kumar, A.: Terminal-repeat retrotransposons in miniature (TRIM) are involved in restructuring plant genomes. Proc. Natl. Acad. Sci. 98, 13778–13783 (2001)

    Article  Google Scholar 

  16. Kalendar, R., Vicient, C.M., Peleg, O., Anamthawat-Jonsson, K., Bolshoy, A., Schulman, A.H.: Large retrotransposon derivatives: abundant, conserved but nonautonomous retroelements of barley and related genomes. Genetics 166, 1437–1450 (2004)

    Article  Google Scholar 

  17. Tanskanen, J.A., Sabot, F., Vicient, C., Schulman, A.H.: Life without GAG: the BARE-2 retrotransposon as a parasite’s parasite. Gene 390, 166–174 (2007)

    Article  Google Scholar 

  18. Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., et al.: Whole-genome random sequencing and assembly of Haemophilus-Influenzae Rd. Science 80(269), 496–512 (1995)

    Article  Google Scholar 

  19. Denoeud, F., Carretero-Paulet, L., Dereeper, A., Droc, G., Guyot, R., Pietrella, M., Zheng, C., Alberti, A., Anthony, F., et al.: The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345, 1181–1184 (2014)

    Article  Google Scholar 

  20. Yu, J., Hu, S., Wang, J., Wong, G.K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., Cao, M., Liu, J., et al.: T HE R ICE G ENOME a draft sequence of the rice genome (Oryza sativa L. ssp.). Science 80(296), 79–92 (2002)

    Article  Google Scholar 

  21. Gropp, W., Lusk, E., Skjellum, A.: Message passing interface, 1–11 (2004)

    Google Scholar 

  22. Kersey, P.J., Allen, J.E., Armean, I., Boddu, S., Bolt, B.J., Carvalho-Silva, D., Christensen, M., Davis, P., Falin, L.J., et al.: Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res. 44, D574–D580 (2016)

    Article  Google Scholar 

  23. Dereeper, A., Bocs, S., Rouard, M., Guignon, V., Ravel, S., Tranchant-Dubreuil, C., Poncet, V., Garsmeur, O., Lashermes, P., Droc, G.: The coffee genome hub: a resource for coffee genomes. Nucleic Acids Res. 43, D1028–D1035 (2015)

    Article  Google Scholar 

  24. McCarthy, E.M., McDonald, J.F.: LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 19, 362–367 (2003)

    Article  Google Scholar 

  25. Rice, P., Longden, I., Bleasby, A.: EMBOSS: the European molecular biology open software suite (2000)

    Google Scholar 

  26. Llorens, C., Futami, R., Covelli, L., Domínguez-Escribá, L., Viu, J.M., Tamarit, D., Aguilar-Rodríguez, J., Vicente-Ripolles, M., Fuster, G., Bernet, G.P., et al.: The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. gkq1061 (2010)

    Google Scholar 

  27. Birney, E., Durbin, R.: Using GeneWise in the Drosophila annotation experiment. Genome Res. 10, 547–548 (2000)

    Article  Google Scholar 

  28. Ma, J., Bennetzen, J.L.: Rapid recent growth and divergence of rice nuclear genomes. Proc. Natl. Acad. Sci. U. S. A. 101, 12404–12410 (2004)

    Article  Google Scholar 

  29. Edgar, R.C.: MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)

    Article  Google Scholar 

  30. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., Mcgettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G.: Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007)

    Article  Google Scholar 

  31. Yoo, A.B., Jette, M.A., Grondona, M.: Slurm: Simple Linux utility for resource management. In: Workshop on Job Scheduling Strategies for Parallel Processing, pp. 44–60 (2003)

    Google Scholar 

  32. Furlani, J.L., Osel, P.W.: Abstract yourself with modules. In: Proceedings of the 10th USENIX Conference on System Administration, pp. 193–204. USENIX Association, Berkeley, CA, USA (1996)

    Google Scholar 

Download references

Acknowledgements

We thank the Centro de Bioinformática y Biología Computacional BIOS for using the supercomputer.

Funding

This work was supported by the Royalties Project “Caldas Bioregión, fortalecimiento de CTeI en biotecnología para el departamento de Caldas apoyado por infraestructura computacional avanzada y trabajo colaborativo”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Orozco-Arias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Orozco-Arias, S., Tabares-Soto, R., Ceballos, D., Guyot, R. (2017). Parallel Programming in Biological Sciences, Taking Advantage of Supercomputing in Genomics. In: Solano, A., Ordoñez, H. (eds) Advances in Computing. CCC 2017. Communications in Computer and Information Science, vol 735. Springer, Cham. https://doi.org/10.1007/978-3-319-66562-7_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66562-7_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66561-0

  • Online ISBN: 978-3-319-66562-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics