Skip to main content

Use of Extra-Corporeal Liver Support Therapies in Acute and Acute on Chronic Liver Failure

  • Chapter
  • First Online:
Hepatic Critical Care

Abstract

Artificial (non-biological) extracorporeal liver support (ECLS) devices aim to remove albumin-bound and water soluble toxins in order to restore and preserve hepatic function and mitigate or limit the progression of multiorgan failure while either hepatic recovery or liver transplant occurs. Current artificial ECLS devices differ primarily in selectivity of the membrane utilized; dialysis based techniques such as the molecular adsorbent recirculating system (MARS®) combine renal replacement therapy with albumin dialysis and a highly selective (<50 kDa) filter in contrast to plasmapheresis (HVP)/plasma separation and filtration (Prometheus) techniques which are less selective (~250 kDa). Artificial ECLS devices have been used to support patients with acute liver failure (ALF) and acute-on-chronic liver failure (ACLF). These devices have been shown to be safe. The following beneficial effects have been documented: improvement of jaundice, amelioration of haemodynamic instability, reduction of portal hypertension, and improvement of hepatic encephalopathy. However, the only randomized prospective multicenter controlled trial to show an improvement in transplant-free survival was for HVP. Biological (cell based) extracorporeal liver support systems (B-ECLS) aim to support the failing liver both through detoxification and synthetic function and warrant further study for safety and benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

ACLF:

Acute on chronic liver failure

ALF:

Acute liver failure

ECLS:

Extracorporeal liver support

FPSA:

Fractionated plasma separation and adsorption

HE:

Hepatic encephalopathy

HRS:

Hepatorenal syndrome

INR:

International normalised ratio

LT:

Liver transplantation

MAP:

Mean arterial pressure

MARS® :

Molecular adsorbent recirculation system

SBP:

Spontaneous bacterial peritonitis

SMT:

Standard medical therapy

SOFA:

Sequential organ failure assessment score

SPAD:

Single pass albumin dialysis

SVRI:

Systemic vascular resistance index

TNF:

Tumor necrosis factor

References

  1. O’Grady JG, Williams R. Classification of acute liver failure. Lancet. 1993;342:743.

    Article  PubMed  Google Scholar 

  2. Fagan E, Wannan G. Reducing paracetamol overdoses. BMJ. 1996;313:1417–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Larson AM, et al. Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology. 2005;42:1364–72.

    Article  CAS  PubMed  Google Scholar 

  4. Ware AJ, D’Agostino AN, Combes B. Cerebral edema: a major complication of massive hepatic necrosis. Gastroenterology. 1971;61:877–84.

    CAS  PubMed  Google Scholar 

  5. Bernal W, Wendon J. Acute liver failure; clinical features and management. Eur J Gastroenterol Hepatol. 1999;11:977–84.

    Article  CAS  PubMed  Google Scholar 

  6. Murphy N, et al. The effect of hypertonic sodium chloride on intracranial pressure in patients with acute liver failure. Hepatology. 2004;39:464–70.

    Article  CAS  PubMed  Google Scholar 

  7. Slack AJ, et al. Ammonia clearance with haemofiltration in adults with liver disease. Liver Int. 2014;34:42–8.

    Article  CAS  PubMed  Google Scholar 

  8. Jalan R, et al. Moderate hypothermia in patients with acute liver failure and uncontrolled intracranial hypertension. Gastroenterology. 2004;127:1338–46.

    Article  CAS  PubMed  Google Scholar 

  9. Moreau R, et al. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology. 2013;144:1426–37. 37.e1–9

    Article  PubMed  Google Scholar 

  10. Sen S, Williams R, Jalan R. The pathophysiological basis of acute-on-chronic liver failure. Liver. 2002;22(Suppl 2):5–13.

    Article  PubMed  Google Scholar 

  11. Sen S, Williams R, Jalan R. Emerging indications for albumin dialysis. Am J Gastroenterol. 2005;100:468–75.

    Article  PubMed  Google Scholar 

  12. Nyberg SL. Bridging the gap: advances in artificial liver support. Liver Transpl. 2012;18(Suppl 2):S10–4.

    Article  PubMed  Google Scholar 

  13. Allen JW, Hassanein T, Bhatia SN. Advances in bioartificial liver devices. Hepatology. 2001;34:447–55.

    Article  CAS  PubMed  Google Scholar 

  14. Evans TW. Review article: albumin as a drug—biological effects of albumin unrelated to oncotic pressure. Aliment Pharmacol Ther. 2002;16(Suppl 5):6–11.

    Article  CAS  PubMed  Google Scholar 

  15. Mitzner S, et al. Albumin regeneration in liver support-comparison of different methods. Ther Apher Dial. 2006;10:108–17.

    Article  CAS  PubMed  Google Scholar 

  16. Stange J, et al. Dialysis against a recycled albumin solution enables the removal of albumin-bound toxins. Artif Organs. 1993;17:809–13.

    Article  CAS  PubMed  Google Scholar 

  17. Stange J, et al. Molecular adsorbent recycling system (MARS): clinical results of a new membrane-based blood purification system for bioartificial liver support. Artif Organs. 1999;23:319–30.

    Article  CAS  PubMed  Google Scholar 

  18. Mitzner SR, et al. Improvement of hepatorenal syndrome with extracorporeal albumin dialysis MARS: results of a prospective, randomized, controlled clinical trial. Liver Transpl. 2000;6:277–86.

    Article  CAS  PubMed  Google Scholar 

  19. Heemann U, et al. Albumin dialysis in cirrhosis with superimposed acute liver injury: a prospective, controlled study. Hepatology. 2002;36:949–58.

    Article  CAS  PubMed  Google Scholar 

  20. Hassanein TI, et al. Randomized controlled study of extracorporeal albumin dialysis for hepatic encephalopathy in advanced cirrhosis. Hepatology. 2007;46:1853–62.

    Article  CAS  PubMed  Google Scholar 

  21. Banares R, et al. Extracorporeal albumin dialysis with the molecular adsorbent recirculating system in acute-on-chronic liver failure: the RELIEF trial. Hepatology. 2013;57:1153–62.

    Article  CAS  PubMed  Google Scholar 

  22. Schmidt LE, et al. Systemic hemodynamic effects of treatment with the molecular adsorbents recirculating system in patients with hyperacute liver failure: a prospective controlled trial. Liver Transpl. 2003;9:290–7.

    Article  PubMed  Google Scholar 

  23. El Banayosy A, et al. First use of the Molecular Adsorbent Recirculating System technique on patients with hypoxic liver failure after cardiogenic shock. Asaio J. 2004;50:332–7.

    Article  PubMed  Google Scholar 

  24. Saliba F, et al. Albumin dialysis with a noncell artificial liver support device in patients with acute liver failure: a randomized, controlled trial. Ann Intern Med. 2013;159:522–31.

    Article  PubMed  Google Scholar 

  25. Stadlbauer V. Effect of extracorporeal liver suppor by MARS and Prometheus on serum cytokines in acute-on-chronic liver failure (AoCLF). Crit Care. 2006;10:1–20.

    Article  Google Scholar 

  26. Karvellas CJ, et al. A case-control study of single-pass albumin dialysis for acetaminophen-induced acute liver failure. Blood Purif. 2009;28:151–8.

    Article  CAS  PubMed  Google Scholar 

  27. Laleman W, et al. Effect of the molecular adsorbent recirculating system and Prometheus devices on systemic haemodynamics and vasoactive agents in patients with acute-on-chronic alcoholic liver failure. Crit Care. 2006;10:R108.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kribben A, et al. Effects of fractionated plasma separation and adsorption on survival in patients with acute-on-chronic liver failure. Gastroenterology. 2012;142:782–9. e3

    Article  CAS  PubMed  Google Scholar 

  29. Kondrup J, et al. High volume plasma exchange in fulminant hepatic failure. Int J Artif Org. 1992;15:669–76.

    CAS  Google Scholar 

  30. Nakamura T, et al. Effect of plasma exchange on serum tissue inhibitor of metalloproteinase 1 and cytokine concentrations in patients with fulminant hepatitis. Blood Purif. 2000;18:50–4.

    Article  CAS  PubMed  Google Scholar 

  31. Larsen FS, et al. Systemic vascular resistance during high-volume plasmapheresis in patients with fulminant hepatic failure: relationship with oxygen consumption. Eur J Gastroenterol Hepatol. 1995;7:887–92.

    CAS  PubMed  Google Scholar 

  32. Larsen FS, et al. Cerebral blood flow, oxygen metabolism and transcranial Doppler sonography during high-volume plasmapheresis in fulminant hepatic failure. Eur J Gastroenterol Hepatol. 1996;8:261–5.

    Article  CAS  PubMed  Google Scholar 

  33. Larsen FS, et al. High-volume plasma exchange in patients with acute liver failure: an open randomised controlled trial. J Hepatol. 2015. https://doi.org/10.1016/j.jhep.2015.08.018.

  34. Doria C, et al. Thromboelastography used to assess coagulation during treatment with molecular adsorbent recirculating system. Clin Transplant. 2004;18:365–71.

    Article  PubMed  Google Scholar 

  35. Tan HK, et al. Anticoagulation minimization is safe and effective in albumin liver dialysis using the molecular adsorbent recirculating system. Artif Organs. 2007;31:193–9.

    Article  PubMed  Google Scholar 

  36. Meijers B, et al. A prospective randomized open-label crossover trial of regional citrate anticoagulation vs. anticoagulation free liver dialysis by the Molecular Adsorbents Recirculating System. Crit Care. 2012;16:R20.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Faybik P, et al. Molecular adsorbent recirculating system and hemostasis in patients at high risk of bleeding: an observational study. Crit Care. 2006;10:R24.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ellis AJ, et al. Pilot-controlled trial of the extracorporeal liver assist device in acute liver failure. Hepatology. 1996;24:1446–51.

    Article  CAS  PubMed  Google Scholar 

  39. Thompson JA, et al. The effect of extracorporeal C3a cellular therapy in severe alcoholic hepatitis—the Elad trial. Hepatology. 2015;62(6, Suppl), Abstract # LB-1, 1379A.

    Google Scholar 

  40. Demetriou AA, et al. Prospective, randomized, multicenter, controlled trial of a bioartificial liver in treating acute liver failure. Ann Surg. 2004;239:660–7. discussion 7–70

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kjaergard LL, et al. Artificial and bioartificial support systems for acute and acute-on-chronic liver failure: a systematic review. JAMA. 2003;289:217–22.

    Article  PubMed  Google Scholar 

  42. Stutchfield BM, Simpson K, Wigmore SJ. Systematic review and meta-analysis of survival following extracorporeal liver support. Br J Surg. 2011;98:623–31.

    Article  CAS  PubMed  Google Scholar 

  43. Antoniades CG, et al. The importance of immune dysfunction in determining outcome in acute liver failure. J Hepatol. 2008;49:845–61.

    Article  CAS  PubMed  Google Scholar 

  44. Glorioso JM, et al. Pivotal preclinical trial of the spheroid reservoir bioartificial liver. J Hepatol. 2015;63:388–98.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantine J. Karvellas M.D., S.M., F.R.C.P.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karvellas, C.J., Olson, J.C., Subramanian, R.M. (2018). Use of Extra-Corporeal Liver Support Therapies in Acute and Acute on Chronic Liver Failure. In: Nanchal, R., Subramanian, R. (eds) Hepatic Critical Care . Springer, Cham. https://doi.org/10.1007/978-3-319-66432-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66432-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66431-6

  • Online ISBN: 978-3-319-66432-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics