Skip to main content

Polymer Families and Their Extended Activities

  • Chapter
  • First Online:
Carbon
  • 1620 Accesses

Abstract

The term polymer (many monomers) is derived from the ancient Greek word πολύζ (polus, meaning many, much) and μέροζ (meros, meaning parts), and refers to a molecule whose structure is composed of multiple repeating units of carbon, mostly hydrogen and/or nitrogen and oxygen (Figs. 4.1, 4.2 and 4.8). Indeed, the term polymer was first introduced in 1833 by the Swedish chemist, Jons Jakob Berzelius. He also introduced the term isomer (from the Greek isos meaning equal, and meros meaning part) to describe substances having identical compositions but differing properties. In 1922, the German chemist, Herman Staudinger, felt it necessary to coin the word macromolecule to describe large covalently bonded organic chain molecule containing more than 103 atoms. A macromolecule is a very large molecule commonly created by polymerization of smaller subunits, monomers. The most common macromolecule in biochemistry is biopolymers (nucleic acids, proteins, etc.). According to IUPAC (International Union of Pure and Applied Chemistry) definition, the term macromolecule as used in polymer science refers only to a single molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.J. Young, Introduction to Polymers (Chapman & Hall, London, 1987)

    Google Scholar 

  2. U.W. Gedde, Polymer Physics (Springer Sci, Heidelberg), pp. 1–3

    Google Scholar 

  3. A. Rudin, P. Choi, The Elements of Polymer Science and Engineering, 3rd edn. (Academic Press, San Diego, 2013)

    Google Scholar 

  4. W.B. Jensen, Ask the historian: the origin of the polymer concept. J. Chem. Educ. 88, 624 (2008)

    Article  Google Scholar 

  5. M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, New York, 2003), p. 6

    Google Scholar 

  6. W.S. Johnson, W.H. Stockmayer, H. Taube, Biographical Memoirs, Paul Flory, vol 82 (The National Academic Press, Washinton DC, 2002)

    Google Scholar 

  7. R. Haag, Supermolecular drug delivery system based on polymeric core-shell architecture. Angew. Chem. Int. Ed. 43(3), 278 (2004)

    Article  Google Scholar 

  8. H. Cho, T.C. Lai, K. Tomoda, G.S. Kwon, Polymeric micelles for multidrug delivery in cancer. AAPS Pharm. Sci. Tech 16(1), 10 (2015)

    Article  Google Scholar 

  9. H.-J. Schnieder, Applications of Supramolecular Chemistry (CRC Press, Boca Raton, 2012)

    Google Scholar 

  10. Y. Zhang, Polymers in therapeutics and nanomedicine. Mater. Matt. 9(3), (2014). Sigma-Aldrich, Pub. Millwaukee, Wisconsin

    Google Scholar 

  11. D. Sutton, N. Nasongkla, E. Blanco, J. Gao, Functionalized micellar system for cancer Targetted drug delivery. Pharm. Res. 24(6), 1029 (2007)

    Article  Google Scholar 

  12. Y. Matsumura et al., Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Br. J. Cancer 91, 1775 (2004)

    Article  Google Scholar 

  13. J.M. Shaw, Overview of Polymers for Electronic and Photonic Applications, in Polymers for Electronic and Photonic Applications, ed. by C.P. Wong (Academic, Boston, 1993), pp. 1–65

    Google Scholar 

  14. M. Tyagi, D. Tyagi, Polymer Nano-composite and their applications in electronic industry. Int. J. Electron. And Electric. Engineer 7(6), 603 (2014)

    Google Scholar 

  15. C.A. Schalley, K. Beizai, F. Vogtle, On the way to Rotaxane-based molecular motors: studies in molecular mobilities and topological chirality. Am. Chem. Soc 34(60), 465 (2001)

    Google Scholar 

  16. P.N. Taylor et al., Insulated molecular wires: synthesis of conjugated polyrotaxanes by Suzuki coupling in water. Agnew. Chem. Int. Ed 39(19), 3456–3460 (2000)

    Article  Google Scholar 

  17. C. Romuald, A. Arda, C. Clavel, J. Jimenez-Barbero, F. Coutrot, Tightening and loosening a pH –sensitive double Lasso molecular machine readily synthesized from an end-activated (C2) daisy chain. Chem. Sci. (RSC Pub.) 3, 1851 (2012)

    Article  Google Scholar 

  18. H. Lodish et al., Molecular Cell Biology, 5th edn. (WH Freeman and Co., New York, 2004)

    Google Scholar 

  19. A. Gutteridge, J.M. Thornton, Understanding nature’s catalytic toolkit. Trends Biochem. Sci. 30(11), 622 (2005)

    Article  Google Scholar 

  20. C. Scholz, Poly (amino acid) block copolymers, for drug delivery and other biomedical applications. Mater. Matt 9(3), 73 (2014)

    Google Scholar 

  21. R. Riva, C. Jerome, Chitosan, a versatile platform. Mater. Matt 9(3), 95 (2014.) Sigma-Aldrich Pub

    Google Scholar 

  22. I.M. Verma, N. Somia, Gene therapy—promises, problems, and propects. Nature 389(6648), 239 (1997)

    Article  Google Scholar 

  23. R. Riva et al., Chitosan derivatives in drug delivery and tissue engineering, in Chitosan for Biomaterials, ed. by R. Jayakumar et al. (Springer, Heidelberg, 2010), pp. 19–44

    Google Scholar 

  24. F.P. Guengerich, Cytome P450s and other enzymes in drug metabolism and toxicity. AAPS J. 8(1), E101 (2006)

    Article  Google Scholar 

  25. C.M. GGrisham, H.G. Reginald, Biochemistry (Saunders College Pub, Philadelphia, 1999)

    Google Scholar 

  26. H. Buc, T. Strick, S. Neidle, et al., RNA Polymerase as Molecular Motors (Royal Society Of Chemistry, Cambridge, 2009)

    Book  Google Scholar 

  27. C.C. Richardson , R. D. Kornberg et al, Annual Rev. Biochem., Annual Reviews, Palo Alto, CA and C.C. Richardson , I.R. Lehman, and R. D. Kornberg Deoxyribonucleic acid Phosphate Exonuclease fron E-Coli II, J. Biol. Chem. 239, 251 (1964)

    Google Scholar 

  28. Genes and disease, Nat. Center for Biotechnology Information (US), Bethesda (MD), (1998)

    Google Scholar 

  29. S.K. Nair, T.L.Claderone, D.W. Christianson, C.A. Fierke, Alternating the mouth of a hydrophobic pocket. Structure and Kinetics of Humancarbonic anhydrase II mutants at residue Val-121. J. Bilogical Chem, 266(26), 17320. Nat. Center for Biotechnology Information (US), Bethesda (MD), (1991)

    Google Scholar 

  30. Entrez Gene: CA2 carbonic anhydrase II, Nat. Center for Biotechnology Information (US), Bethesda (MD)

    Google Scholar 

  31. S.J. Weinstein et al., Null association between prostate cancer and Serum Folate, Vitamin B (6), Vitamin B (12), and homocysteine. Cancer Epidemiol Biomak. Prev 12(11Pt 1), 1271. PMID 1452294 (2003)

    Google Scholar 

  32. V. Renugopalkrishnan et al., Rational design of thermally stable proteins: relevance to bionanotechnology. J. Nanosci. Nanotechnol. 5(11), 1759 (2005)

    Article  Google Scholar 

  33. K. Hult, P. Berguland, Engineered enzymes for improved organic synthesis. Curr. Opin. Biotechnol. 14(4), 395 (2003)

    Article  Google Scholar 

  34. R. Li, Forensic Biology, 2nd edn. (CRC Press, Boca Raton, 2015), p. 291

    Google Scholar 

  35. W.K. Purves, D.E. Sadova, G.H. Orians, H.C. Hailer, Life: The Science of Biology, 7th edn. (Sinauer Assoc. Inc. Pub, Sunderland, 2004), p. 48

    Google Scholar 

  36. T. Feizi, W. Chai, Oligosaccharide microarrays to decipher the glycol code. Nat. Rev. Mol. Cell Biol. 5(7), 582 (2004)

    Article  Google Scholar 

  37. L.H. Sperling, Introduction to Physical Polymer Science (Wiley, Hoboken, 2006)

    Google Scholar 

  38. J.C. Paterson Jones, M.G. Gillard, J. van Staden, The biosynthesis of natural rubber. J. Plant Physiol. 136(3), 257 (1990)

    Article  Google Scholar 

  39. M.J. McCoy, M.S. Matthew Wolter, K.E. Anderson, A safety Professional’s review of natural rubber latex testing in work place. Am. J. SH & E Res 5(3), 1 (2008)

    Google Scholar 

  40. M.D. Joesten, J.L. Hogg, M.E. Castellion, The World of Chemistry Essentials (Thomas Brooks Cole Pub, Bemont, 2007), p. 337

    Google Scholar 

  41. H.P. Affek, D. Yakir, Natural abundance carbon isotope comparison of isoprene reflects incomplete coupling between isoprene synthesis and photosynthetic carbon flow. Plant Physiol. 131, 1727 (2003)

    Article  Google Scholar 

  42. T.D. Sharkey, A.E. Wiberby, A.R. Donhue, Isoprene emission from plants: why and how. Ann. Bio. 10(1), 5 (2008)

    Google Scholar 

  43. W.H. Carothers, Studies on polymerization and ring formation. I. An introduction to general theory of condensation polymers. J. Am. Chem. Soc. 51(8), 2548 (1929)

    Article  Google Scholar 

  44. T. Desmond, W. Obrecht, W. Wolfgang, G. Wachholz, R. Engehausen, Robber, 3 synthetic rubbers: introduction and overview, in Ulmann’s Encyclopedia of Industrial Chemistry, (Wiley-VCH, Weinham, 2011)

    Google Scholar 

  45. A.K. Naskar et al., Tailored recovery of carbons from waste tires for enhanced performance as anodes in Lithium ion batteries. RSC Adv. 4(72), 38213 (2014)

    Article  Google Scholar 

  46. B. Kuhlman et al., Design of a novel globular protein fold with atomic level accuracy. Science 302(5649), 1364 (2003)

    Article  Google Scholar 

  47. H.M. Berman, The protein data bank: a historical perspective. Acta Crystallogr. A-64, 88 (2008)

    Article  Google Scholar 

  48. J.W. Watson, DNA, The Secret of Life (Alfred A. Knopf pub, New York, 2004)

    Google Scholar 

  49. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland Science Pub, New York, 2002)

    Google Scholar 

  50. A. Smith, K. Shaw, Discovering the relationship between DNA and protein production. Nature Education 1(10), 112 (2008)

    Google Scholar 

  51. S. Brenner et al., An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature 190, 576 (1961)

    Article  Google Scholar 

  52. E. Fahey et al., Update of the LIPIDS MAPs comprehensive classification system of lipids. J. Lipid Res. 50, S9 (2009)

    Article  Google Scholar 

  53. Y. Chen, E.E. Kely, R.P. Masluk, C.L. Nelson, D.C. Cantu, P.J. Reilly, Structural classification and properties of Ketoacyl synthesis. Protein Sci. 20(10), 1659 (2011)

    Article  Google Scholar 

  54. R. Johnson, Proteomics: profiling lipited proteins. Nat. Chem. 7, 456 (2015)

    Google Scholar 

  55. A.J. Lusis, P. Pajukanta, A treasure trove for lipoprotein biology. Nat. Genet. 40(2), 129 (2008)

    Article  Google Scholar 

  56. V. Kumar et al., Three dimensional CryoEM reconstruction of native LDL particles to 16ÅResolution at physiological body temperature. PLoS One 6(5), e18841 (2011)

    Article  Google Scholar 

  57. H. Garrett, M. Grishman, Biochemistry, 4th edn. (Brooks Cole, MA, 2008)

    Google Scholar 

  58. K. Bloch, D. Rittenberg, On the utilization of acetic acid for cholesterol formation. J. Biol. Chem. 145, 625 (1942)

    Google Scholar 

  59. N. Kresge, R.D. Simon, R.L. Hill, The biosythetic pathway for cholesterol. J. Biol. Chem. 280 (2005)

    Google Scholar 

  60. J. T. Smith, Squalene potential Chemopreventive agent. Expert Opinion on Investigational Drugs. 9(8), 1841 (2000) and also Gulf war Syndrome, U. Virginia archive, July 14, (2004)

    Google Scholar 

  61. M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, Oxford, GB, 2003)

    Google Scholar 

  62. J. Clayden, N. Greeves, S. Warren, Organic Chemistry (Oxford University Press, Oxford, London, 2000), p. 1450

    Google Scholar 

  63. G. Odian, Principles of Polymerization (Wiley, Hoboken, 2004)

    Book  Google Scholar 

  64. K. Matyjaszewski, Cationic Polymeriztions: Mechanisms, Synthesis, and Applications (Marcel and Dekker, Inc., New York, 1996)

    Google Scholar 

  65. H. Hsieh, R.P. Quirk, Anionic Polymerization, in Encyclopedia of Polymer Science and Technology (Wiley, New York, 2003)

    Google Scholar 

  66. H. Hsieh, R. Quirk, Anionic Polymerization: Principles and Practical Applications (Marcel Dekker, New York, 1996)

    Google Scholar 

  67. J. Maul, B.G. Frushour, J.R. Kontoff, H. Eichenauer, K.-H. Ott, C. Shade, Polystyrene and Styrene Copolymers, in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, Weinheim, 2007)

    Google Scholar 

  68. W. Saenger, Principles of Nucleic Acid Structures (Springer, New York, 1984)

    Book  Google Scholar 

  69. A.G. Leslie, S. Amott, R. Chandrasekaran, R.L. Ratliff, Polymorphism of DNA double helix. J. Mol. Biol. 143(1), 49 (1980)

    Article  Google Scholar 

  70. J.Darnell, H. Lodish, D. Baltimore, Molecular Cell Biology (Scientific American, Washington, DC, 1986), p. 83

    Google Scholar 

  71. S. Kavesh, J.M. Schultz, Meaning and measurement of crystallinity in polymer. Poly. Eng. Sci 9(5), 331 (1969)

    Article  Google Scholar 

  72. G. Odian, Principles of Polymerization, 3rd edn. (Wiley, New York, 1991), p. 27

    Google Scholar 

  73. G.W. Ehrenstein, R.P. Theriault, Polymeric Materials: Structure, Properties, Applications (Hanser Verlag Pub., Munich), p. 67

    Google Scholar 

  74. B. Tipton, Prevention of Environmentally Induced Degradation of Carbon/Epoxy Composite Materials, M.S. Thesis, Mech. Mater. And Aerospace Eng. Univ. of Central Florida, FL., (2000)

    Google Scholar 

  75. K.H. Wu, K. Fa Cheng, C.C. Yang, C.P. Wang, C.I. Liu, Thermal and optical properties of epoxy/Siloxane Hybrimer based on sol-gel derived phenyl Siloxane. Open J. of Comp. Mater 5, 49 (2015)

    Google Scholar 

  76. R.E. Young, in Unsaturated Polyester Technology, ed. by P.E. Bruins (Gordon and Beach, New York, 1976), p. 315

    Google Scholar 

  77. N. Eric, The Complex Phase Behavior of Aqueous Solutions of Water-Soluble Polymers, Ph.D. Thesis, Department of Chemistry, Katholieke Universiteit Leuven, Belgium, Leuven, (April 2014)

    Google Scholar 

  78. F. Castro-Marcano, A.M. Catano-Burrera, C.M. Collina, Phase behavior of polymer solutions from macroscopic properties: application to the perturbed chain statistical associating fluid theory equation of state. Ind. Eng. Chem. Res. 50(2), 1046 (2011)

    Article  Google Scholar 

  79. C. Wohlfarth, Hand Book of Liquid-Liquid Equilibrium Data of Power Solutions (CRC Press Pub, Boca Raton, 2008)

    Google Scholar 

  80. C.E. Astete, C.M. Sabliov, Synthesis and characterization of PLGA nanoparticles. J. Bio. Mater. Sci. Poly.ed 17(3), 247 (2006)

    Article  Google Scholar 

  81. E.Vey, A.F. Miller, M. Claybourn, and A. Saiani, In Vivbro Degradation of Poly (lactic-CO2-Glycolic) Acid Random Co-polymers, The 6th. Int. Symp. On Polymer-Solvent Complexes, Aug. 29-1st Sept. (2006), Manchester, UK. Macromolcular Symp. 251 (1), 81, (2007)

    Google Scholar 

  82. T. Lin, C.K. Poh, W. Wang, Poly (lactic-co-glycolic acid) as a controlled release delivery device. J. Mater. Sci. Mater. Med. 20(8), 1669 (2009)

    Article  Google Scholar 

  83. T.K. Gupta, Copper Interconnect Technology (Springer, New York, 2009) and also T.K. Gupta, Hand Book of Thick and Thin Film Hybrid Microelectronics (Wiley, Hoboken, 2003)

    Google Scholar 

  84. T.K. Gupta, Hand Book of Thick and Thin Film Hybrid Microelectronics (Wiley, Hoboken, 2003)

    Book  Google Scholar 

  85. J. Kosar, Light Sensitive Systems (Wiley, NY, 1965) and also Ira Flatow, Transistorized!, broad cast on PBS, and TV movie made by Ira Flatow, Executive Producer and Director, ScienCetral, in 1999, credit goes to Am. Physical Soc

    Google Scholar 

  86. R. Glang, L.V. Gregor, Generation of patterns in thin films, in Handbook of Thin Film Technology, ed. by L.I. Maissel, R. Glang (McGraw Hill, New York, 1970)

    Google Scholar 

  87. L.F. Thompson, C.G. Willson, J.M.J. Frechet (eds.), Am. Chem. Soc., (1984), Washington DC and Ms. A. K. Sheela, Assistant Manager, Transparency Market Research, State Tower, 90 State Street, Suite 700, Albany NY., 12207

    Google Scholar 

  88. J. Liu et al., Process research of high aspect ratio microstructure using SU-8 resist. Microsyst. Technol. 10(4), 265 (2004)

    Article  Google Scholar 

  89. S. Deokar, R.S. Ghadage, C.R. Rajan, S. Ponrothnam, Facile synthesis of poly(4-Hydroxy styrene) from polystyrene. J. Appl. Poly. Si 91(5), 3192 (2004)

    Article  Google Scholar 

  90. D. Basting et al., Historical review of excimer lase development, in Excimer Laser Technology, ed. by D. Basting, G. Marowsky (Springer, Heidelberg, 2005)

    Google Scholar 

  91. P.J. Wibawa, A. Agam, H. Nur, H. Sain, Changes in physical properties and molecular structures of polystyrene Nano sphere exposed with solar flux. AIP Conf. Proc 1341, 54 (2011)

    Article  Google Scholar 

  92. W. Zhou, Nanoprint Lithography Resist, Chapt-3 (Springer, Hiedelberg, 2013), p. 99

    Google Scholar 

  93. S. Tgawa et al., Radiation photochemistry of onium salt acid generators I chemically amplified resist. Proc. SPIE 3999, 204 (2000)

    Article  Google Scholar 

  94. L.G. Wade, Organic Chemistry, 6th edn. (Pearson Prentice Hall Pub, Upper Saddle River, 2006), p. 279

    Google Scholar 

  95. G.P. Moss, P.A.S. Smith, D. Tavernier, Pure Appl. Chem. 67(8–9), 1307 (1995)

    Google Scholar 

  96. Production and Growth is the Norm, Chem. Eng. News, ACS Nat. 232nd Meeting, San Francisco, Sept. 10–14 (2006), 84 (28), 59 (2006)

    Google Scholar 

  97. K. Sakurai, H. Nemoto, and A. Kumano, Radiation Sensitive Composition, U.S. Patent # 6348298, Feb. 19, (2002)

    Google Scholar 

  98. J. Saw, J. Gelorme, N. LaBianca, W. Conley, S. Holmes, Negative photoresists for optical lithography. IBM J. Res. & Devp 41(1–2) (1997)

    Google Scholar 

  99. N. Zelentsova, S. Zelentsova, M. Abadie, E. Makareeva, Photochemical Crosslinking of Low Molecular Weight Vinyl Containing Polysiloxane with Organic Azides (Russian Univ. Scitific Res. 2000)

    Google Scholar 

  100. David C. Brock, Reflections on Moore’s Law, Chapt-8, Chem. Heritage Foundation, Diane Pub. Co., Darby, PA, (2006)

    Google Scholar 

  101. B. Hoeneisen, C.E. Mead, Fundamental Limitations in Microelectronics. Solid State Electron. 15(7), 819 (1972)

    Article  Google Scholar 

  102. T. Kozava, H. Oizumi, T. Itani, S. Tagava, Latent image created by using small field exposure tool for extreme ultraviolet lithography. Jpn. Appl. Phys. Express 2(7), 075006-1–075006-3 (2009)

    Google Scholar 

  103. T.K. Gupta, Copper Interconnect Technology (Springer, New York, 2009)

    Book  Google Scholar 

  104. G.T. Teixidor et al., Carbon microelectromechanical systems as a substratum for cell growth. Biomed. Mater. 3, 1 (2008)

    Article  MathSciNet  Google Scholar 

  105. S. Ranganathan et al., Photoresist derived carbon for microelectrochemical systems and electrochemical applications. J. Electrochem. Soc. 147, 447 (2000)

    Article  Google Scholar 

  106. G. Jenkins, K. Kawamura, Polymeric Carbons-Carbon Fiber, Glass and Char (Cambridge University Press, Cambridge, 1976)

    Google Scholar 

  107. J. Kim, X. Song, K. Kinoshita, M. Madou, R. White, Electrochemical studies of carbon films from Pyrolyzed photoresist. J. Electrochem. Soc. 145(7), 2314 (1998)

    Article  Google Scholar 

  108. H. Zhou, A. Gupta, J. Zou, J. Zhou, Photoresist derived carbon for growth and differentiation of neuron cells. Int. J. Mol. Sci. 8(8), 884 (2007)

    Article  Google Scholar 

  109. S. Ranganathan, R. McCreery, S.M. Majji, M. Madou, Photoresist derived carbon for microelectromechanical systems and electrochemical applications. J. Electrochem. Soc. 147(1), 277 (2000)

    Article  Google Scholar 

  110. H.Q. Ziang, S.B. Fang, Y.Y. Jiang, Carboneceous anodes for lithium ion batteries prepared from phenolic Resis with different cross-linking densities. J. Electrochem. Soc. 144, L187 (1997)

    Article  Google Scholar 

  111. V. Rehacek et al., Pyrolyzed photoresist film electrodes for application in electro-analysis. J. Electr. Eng. 62(1), 49 (2011)

    Google Scholar 

  112. A. Sing, J. Jayaram, M. Madou, S. Akbar, Pyrolysis of negative photoresists to fabricate carbon structures for microelectrochemical systems and electrochemical applications. J. Electrochem. Soc. 149(3), E-78 (2002)

    Article  Google Scholar 

  113. A.J. Griffiths et al., Introduction to Genetic Analysis, 9th edn. (W.H. Freeman and Co., New York, 2008)

    Google Scholar 

  114. J.C. Liao et al., Use of electrochemical DNA biosensor for rapid molecular identification of Uropathogenes in clinical urine specimens. J. Clin. Microbiol. 44, 561 (2006)

    Article  Google Scholar 

  115. S.R. Batten, S.M. Neville, D.R. Turner, Coordination Polymers: Design, Analysis and Applications (RSC, Cambridge, 2009)

    Google Scholar 

  116. J.L.C. Rowsell, O.M. Yaghi, Metal organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73, 3 (2004)

    Article  Google Scholar 

  117. J.R. Long, O.M. Yaghi, The pervasive chemistry of metal organic frame works. Chem. Soc. Rev. 38, 1213 (2009)

    Article  Google Scholar 

  118. M. Jacoby, Heading the market with MOFS. In Chem. Eng. News 86, 13 (2008)

    Google Scholar 

  119. A.U. Czaja, N. Trukhan, U. Muller, Industrial application of metal organic frameworks. Chem. Soc. Rev. 38, 1284 (2009)

    Article  Google Scholar 

  120. A.D. Naik et al., Coordination polymers and metal organic frameworks derived from 1,2,4-Triazole amino acid linkers. Polymer 3, 1750 (2011)

    Article  Google Scholar 

  121. S.R. Batten et al., Terminology of metal-organic frameworks and coordination polymers. Pure Appl. Chem. 85(8), 1715 (2013)

    Article  Google Scholar 

  122. S. Thomas M. Zalbowitz, Fuel Cells, Green Power (Los Alamos Nat. Lab. Los Alamos, New Mexico)

    Google Scholar 

  123. B.K. Kakati, D. Deka, Development of low-cost advanced bipolar plate for P.E.M.Fuel cell. Fuel Cells 8(1), 45 (2008)

    Article  Google Scholar 

  124. S. Gottesfeld, Polymer Electrolyte Fuel Cells, Adv. in Electrochem. Sci., Eng. 5, (1997), Wiley-VCH, Germany

    Google Scholar 

  125. A.B. Stambouli, Solid oxide fuel cells (SOFCs), a review of an environmentally clean and efficient source of energy. Renew. Sustain. Energy Rev. 6(5), 433 (2002)

    Article  Google Scholar 

  126. M. Spinelli et al., Application of Molten Carbonate Fuel Cells in Cement Plants for CO2 Capture and Clean Power Generation, Energy Procedia, 63, 6517 (2014) and also Molten Carbonate Fuel Cells, U.S. dept. Energy, 9th August, 2011

    Google Scholar 

  127. C.E (Sandy).Thomas et al., Integrated Analysis of Hydrogen Passenger Vehicle Transporation Pathways, National Renewable Energy Lab. March (1998)

    Google Scholar 

  128. Fuel Cell Handbook (4th ed.) U.S. Dept. of Energy Office of Fossil Energy, Fed. Energy Tech. Center, Nov. 1998

    Google Scholar 

  129. Hydrogen and Fuel Cell Vehicles Worldwide, Industrie Service-GmbH, Accessed on 2nd August, 2011

    Google Scholar 

  130. M. Millikin (ed.), Green Car Congress, Navigant: fuel cell industry passed $1 billion revenue mark in 2012, Green Car Congress, August 12th, 2013

    Google Scholar 

  131. S. Wang, D. Yu, L. Dai, Polyelectrolyte fuctionalized carbon Nano-tubes as efficient metal free electrocatalysts for oxygen reduction. J. Am. Chem. Soc. 133(14), 5182 (2011)

    Article  Google Scholar 

  132. M.H. Robson, K. Artyushkova, W. Patterson, P. Atanassov, M. Hibbs, Non-platinum carbon supported oxygen reduction catalyst ink evaluation basen on poly (Sulfone) and poly (Phenylene)-derived Ionomers in alkaline media. Electrocatalysis 5(2), 148 (2014)

    Article  Google Scholar 

  133. K. Kinoshita, Carbon, Electrochemical and Physicochemical Properties (Wiley, New York, 1998)

    Google Scholar 

  134. G. Wang, Y. Weng, C. Deryn, D. Xie, R. Chen, Preparation of alkaline anion exchange membranes based on fuctional poly (ether-amide) polymers for potential fuel cell applications. J. Membr. Sci. 326(1), 4 (2008)

    Article  Google Scholar 

  135. D. Golodnitsky, E. Strauss, E. Peled, G. Greenbaum, Review – on order and disorder in polymer electrolytes. J. Electrochem. Soc. 162(14), A2551–A2556 (2015)

    Article  Google Scholar 

  136. Y. Wang, B. Li, J. Liu, Q. Li, et al., Lithium and Lithium ion batteries for applications in microelectronic devices—A review. J. Power Sources 247, 452 (2014)

    Article  Google Scholar 

  137. Z. Gadjourova, Y.G. Andreev, D.P. Tunstall, P.G. Bruce, Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520 (2001)

    Article  Google Scholar 

  138. Z. Stoeva, I. Martin-Litas, E. Staunton, Y.G. Andreev, P.G. Bruce, Ionic conductivity in crystalline polymer electrolytes. J. Am. Chem. Soc. 125, 4619 (2003)

    Article  Google Scholar 

  139. L. Gitelman, M. Israeli, A. Averbauch, M. Nathan, Z. Schuss, D. Golodnitsky, Modeling and simulation of Li-ion conduction in poly (ethylene Oxide). J. Computational Phys. 227, 1162 (2007) and also L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A4, 10038 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Gupta, T. (2018). Polymer Families and Their Extended Activities. In: Carbon. Springer, Cham. https://doi.org/10.1007/978-3-319-66405-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66405-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66404-0

  • Online ISBN: 978-3-319-66405-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics