Skip to main content

Performance Analysis of Wave Energy Harvesting System with Piezoelectric Element

  • Conference paper
  • First Online:
Mechatronics 2017 (MECHATRONICS 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 644))

Included in the following conference series:

  • 2433 Accesses

Abstract

Wave energy harvesting systems capture power from the sea or ocean waves. Piezoelectric elements are materials that can create electricity when subjected to a mechanical stress. In this study, wave energy harvesting system with piezoelectric element is used to generate power. For this aim, a wave tank with wavemaker was built in laboratory condition. Wavemaker generates sinusoidal twin waves with 4 cm height per second. An obstacle with piezoelectric element is placed in the tank. The parameters of the experimental study are obstacle position and piezoelectric element angle with water level. It is found that the position and angle of the piezoelectric element is very important to generate power for the wave harvesting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.renewableenergyworld.com/index/tech.html

  2. http://extension.psu.edu/natural-resources/energy/what

  3. http://www.renewableenergyspot.com/tidal-wave-energy/

  4. Changwei, L., Junxiao, A., Lei, Z.: Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier. Ocean Eng. 136, 190–200 (2017)

    Article  Google Scholar 

  5. Heath, T., Whittaker, T.J.T., Boake, C.B.: The design, construction and operation of the LIMPET wave energy converter. In: Proceedings of the 4th European Wave Energy Conference, Islay, Scotland (2000)

    Google Scholar 

  6. Clément, A., McCullen, P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., Lemonis, G., Lewis, T., Nielsen, K., Petroncini, S., Pontes, M.T.: Wave energy in Europe: current status and perspectives. Renew. Sustain. Energy Rev. 6, 405–431 (2002)

    Article  Google Scholar 

  7. Boake, C.B., Whittaker, T.J., Folley, M., Ellen, H.: Overview and initial operational experience of the LIMPET wave energy plant. In: Proceedings of the Twelfth International Offshore and Polar Engineering Conference, Kitakyushu, Japan (2002)

    Google Scholar 

  8. Folley, M., Whittaker, T.J.T., Van’t Hoff, J.: The design of small seabed-mounted bottom-hinged wave energy converters. In: Proceedings of the 7th European Wave and Tidal Energy Conference, Porto, Portugal (2007)

    Google Scholar 

  9. Henderson, R.: Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renew. Energy 31, 271–283 (2006)

    Article  Google Scholar 

  10. Dalton, G., Raymond, A., Lewis, T.: Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America. Renew. Energy 35, 443–455 (2010)

    Article  Google Scholar 

  11. Scruggs, J., Jacob, P.: Harvesting ocean wave energy. Science 323, 1176–1178 (2009)

    Article  Google Scholar 

  12. Boström, C., Lejerskog, E., Stålberg, M., Thorburn, K., Leijon, M.: Experimental results of rectification and filtration from an offshore wave energy system. Renew. Energy 34, 1381–1387 (2009)

    Article  Google Scholar 

  13. Lejerskog, E., Gravråkmo, H., Savin, A., Strömstedt, E., Tyrberg, S., Haikonen, K., Krishna, R., Boström, C., Rahm, M., Ekström, R., Svensson, O.: Lysekil Research Site, Sweden: a status update. In: Proceedings of the 9th European Wave and Tidal Energy Conference, Southampton, UK (2011)

    Google Scholar 

  14. Wei, C., Jing, X.: A comprehensive review on vibration energy harvesting: modelling and realization. Renew. Sustain. Energy Rev. 74, 1–18 (2017)

    Article  Google Scholar 

  15. http://revibeenergy.com/vibrationenergyharvesting

  16. Yi, K., Collet, M., Chesne, S., Monteil, M.: Enhancement of elastic wave energy harvesting using adaptive piezo-lens. Mech. Syst. Signal Process. 93, 255–266 (2017)

    Article  Google Scholar 

  17. http://tr.farnell.com/multicomp/mcft-50g-3-2a1-144/piezo-element

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Koca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Koca, A., Erdoğan, K. (2018). Performance Analysis of Wave Energy Harvesting System with Piezoelectric Element. In: Březina, T., Jabłoński, R. (eds) Mechatronics 2017. MECHATRONICS 2017. Advances in Intelligent Systems and Computing, vol 644. Springer, Cham. https://doi.org/10.1007/978-3-319-65960-2_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65960-2_91

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65959-6

  • Online ISBN: 978-3-319-65960-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics