Skip to main content

Some Results Involving Euler-Type Integrals and Dilogarithm Values

  • Chapter
  • First Online:
  • 512 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 728))

Abstract

The claim that \( \text {Li}_2\Big (- \displaystyle \frac{\sqrt{5}+1}{2}\Big ) = -\displaystyle \frac{\,\, \pi ^2}{10} + \displaystyle \frac{1}{2} \log ^2 \Big ( \frac{\sqrt{5}+1}{2}\Big ),\) circulating in the dilogarithm literature since at least 1958, is wrong. We derive the correct value \(\,\text {Li}_2\bigg ( -\displaystyle \frac{\sqrt{5}+1}{2}\bigg ) = -\displaystyle \frac{\,\, \pi ^2}{10} - \log ^2 \bigg ( \displaystyle \frac{\sqrt{5}+1}{2} \bigg )\,\) and use it to obtain several formulas for \(\pi ^2\) in terms of dilogarithm values at the “golden relatives” \(\, \displaystyle \frac{1}{\phi ^2}, \, \displaystyle \frac{1}{\phi }, \, -\,\displaystyle \frac{1}{\phi }, -\,\phi \ \) of \(\,\phi \,= \,\displaystyle \frac{\sqrt{5}+1}{2}.\) We also sum the series \(\,\displaystyle \sum _{n=0}^\infty \displaystyle \frac{G_N(n)}{(2n+1)^3} \,\) and \(\,\displaystyle \sum _{n=1}^\infty \frac{H_N(n)}{n^3} \,\) in terms of Euler-type integrals \(\,\displaystyle \int _0^{\frac{\pi }{2}} x^{M} \log (\sin x)\, \mathrm{d}x, \,\) where \(\,G_N(n)\,\) and \(\,H_N(n)\,\) are the quantities appearing in the Borwein-Chamberland expansions of \( \,\arcsin ^{2N+1}(z) \,\) and \(\, \arcsin ^{2N}(z), \,\) respectively. As special cases we obtain very simple proofs of Euler’s equation

$$\,\zeta (3) = \frac{2\pi ^2 }{7} \log 2 + \frac{16}{7} \int _0^{\frac{\pi }{2}} x \log (\sin x) {\text {d}} x \,$$

and of the similar formula

$$\,\zeta (3) = \frac{2\pi ^2 }{9} \log 2 + \frac{16}{3\pi } \int _0^{\frac{\pi }{2}} x^2 \log (\sin x) {\text {d}}x.$$

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Borwein, J., Chamberland, M.: Integer powers of arcsin. Int. J. Math. Math. Sci., Art. ID 1981 (2007)

    Google Scholar 

  2. Choe, R.: An elementary proof of \(\, \sum _{n=1}^\infty \frac{1}{n^2} = \frac{\pi ^2}{6}\). Am. Math. Mon. 94, 662–663 (1987)

    Article  Google Scholar 

  3. Euler, L.: Exercitationes analyticae. Novi Comment. Acad. Sci. Imp. Petropol. 17, 173–204 (1772)

    Google Scholar 

  4. Landen, J.: Mathematical Memoirs. London (1780)

    Google Scholar 

  5. Lewin, L.: Dilogarithms and Associated Functions. Macdonald, London (1958)

    MATH  Google Scholar 

  6. Lewin, L.: Polylogarithms and Associated Functions. Elsevier (North-Holland), New York/London/Amsterdam (1981)

    MATH  Google Scholar 

  7. Markov, L.: Some results involving Euler-type integrals and dilogarithm values. In: BGSIAM’16 Proceedings, pp. 54–55 (2016)

    Google Scholar 

  8. Maximon, L.: The dilogarithm function for complex argument. Proc. R. Soc. Lond. 459, 2807–2819 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Schumayer, D., Hutchinson, D.A.W.: Physics of the Riemann hypothesis. Rev. Mod. Phys. 83, 307–330 (2011)

    Article  Google Scholar 

  10. Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Kluwer Academic Publishers, Dordrecht/Boston/London (2001)

    Book  MATH  Google Scholar 

  11. Weisstein, E.: Dilogarithm, from MathWorld—A Wolfram Web Resourse. http://mathworld.wolfram.com/Dilogarithm.html. Accessed 5 Dec 2017

  12. Zagier, D.: The remarkable dilogarithm. J. Math. Phys. Sci. 22, 131–145 (1988)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author expresses his gratitude to the referee who pointed out to him the fact that the value for \(\text {Li}_2\big ( -\phi \big )\) is given on the Internet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubomir Markov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Markov, L. (2018). Some Results Involving Euler-Type Integrals and Dilogarithm Values. In: Georgiev, K., Todorov, M., Georgiev, I. (eds) Advanced Computing in Industrial Mathematics. Studies in Computational Intelligence, vol 728. Springer, Cham. https://doi.org/10.1007/978-3-319-65530-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65530-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65529-1

  • Online ISBN: 978-3-319-65530-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics