Skip to main content

Who Is an Appropriate Candidate for Long-Term MCS?: The Art of Patient Selection

  • Chapter
  • First Online:
Mechanical Circulatory Support for Advanced Heart Failure

Abstract

Heart failure (HF) is a chronic and complex disease that has reached epidemic proportions worldwide. An estimated 6.5 million Americans have HF, and it is the leading cause of morbidity and mortality, with 50% mortality within 5 years of diagnosis [1]. Approximately less than 10% of this population will progress to advanced HF. These patients experience poor quality of life, frequent hospitalizations, and a 1-year mortality of 25–50% [2, 3]. Advanced HF is characterized by severe symptoms of heart failure with dyspnea and/or fatigue at rest or with minimal exertion, episodes of fluid retention, objective evidence of severe cardiac dysfunction, severe impairment of functional capacity, history of ≥1 HF hospitalization in the past 6 months, and the presence of all the previous features despite attempts to optimize therapy (Table 2.1) [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Benjamin EJ, Blaha MJ, Chiuve SE, et al. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation. 2017;135(10):e146–603.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Metra M, Carubelli V, Ravera A, et al. Heart failure 2016: still more questions than answers. Int J Cardiol. 2017;227:766–77.

    Article  PubMed  Google Scholar 

  3. Gustafsson F, Rogers JG. Left ventricular assist device therapy in advanced heart failure: patient selection and outcomes. Eur J Heart Fail. 2017;19(5):595–602.

    Article  PubMed  Google Scholar 

  4. Metra M, Ponikowski P, Dickstein K, et al. Advanced chronic heart failure: a position statement from the Study Group on Advanced Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2007;9:684–94.

    Article  PubMed  Google Scholar 

  5. Pleura JL, Colvin-Adams M, Francis GS, et al. Recommendations for the use of mechanical circulatory support: device strategies and patient selection. A scientific statement from the American Heart Association. Circulation. 2012;126:2648–67.

    Article  Google Scholar 

  6. Frazier OH, Rose EA, McCarthy P, et al. Improved mortality and rehabilitation of transplant candidates treated with long-term implantable left ventricular assist system. Ann Surg. 1995;222:327–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Frazier OH, Rose EA, Oz MC, et al. Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J Thorac Cardiovasc Surg. 2001;122:1186–95.

    Article  CAS  PubMed  Google Scholar 

  8. Pagani FD, Miller LW, Russell SD, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54:312–21.

    Article  PubMed  Google Scholar 

  9. Kirklin JK, Naftel DC, Pagani FD, et al. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34:1495–504.

    Article  PubMed  Google Scholar 

  10. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

    Article  CAS  PubMed  Google Scholar 

  11. Slaugther MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241–51.

    Article  Google Scholar 

  12. Starling RC, Naka Y, Boyle AJ, et al. Results of the post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2011;57:1890–8.

    Article  PubMed  Google Scholar 

  13. Williams ML, Trivedi JR, McCants KC, et al. Heart transplantation vs left ventricular assist device in heart-transplant-eligible patients. Ann Thorac Surg. 2011;91:1330–3.

    Article  PubMed  Google Scholar 

  14. Miller LW, Guglin M. Patient selection for ventricular assist devices. J Am Coll Cardiol. 2013;61:1209–21.

    Article  PubMed  Google Scholar 

  15. Center for Medicare & Medicaid Services. Medicare national coverage determinations manual. 2010. http://www.cms.gov/manuals/downloads/ncd103c1_part1.pdf. Accessed September 27, 2016.

  16. Khazanie P, Rogers JG. Patient selection for left ventricular assist device. Congest Heart Fail. 2011;17:227–34.

    Article  PubMed  Google Scholar 

  17. Alba AC, Rao V, Ross HJ, et al. Usefulness of the INTERMACS scale to predict outcomes after mechanical assist device implantation. J Heart Lung Transplant. 2009;28:827–33.

    Article  PubMed  Google Scholar 

  18. Boyle AJ, Ascheim DD, Russo MJ, et al. Clinical outcomes for continuous-flow left ventricular assist device patients stratified by pre-operative INTERMACS classification. J Am Coll Cardiol. 2013;61:313–21.

    Article  CAS  Google Scholar 

  19. Knaus WA, Draper EA, Wagner DP, et al. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.

    Article  CAS  PubMed  Google Scholar 

  20. Gracin N, Johnson MR, Spokas D, et al. The use of APACHE II scores to select candidates for left ventricular assist device placement. Acute Physiology and Chronic Health Evaluation. J Heart Lung Transplant. 1998;17:1017–23.

    CAS  PubMed  Google Scholar 

  21. Levy WC, Mozaffarian D, Linker DT, et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006;113:1421–33.

    Article  Google Scholar 

  22. Kalogeropoulos AP, Gerogiopoulou VV, Giamouzis G, et al. Utility of the Seattle heart failure model in patients with advanced heart failure. J Am Coll Cardiol. 2009;120:835–42.

    Google Scholar 

  23. Levy WC, Mozaffarian D, Linker DT, et al. Can the Seattle Heart Failure Model be used to risk-stratify heart failure patients for potential left ventricular assist device therapy? J Heart Lung Transplant. 2009;28:231–6.

    Article  PubMed  Google Scholar 

  24. Ketchum ES, Moorman AJ, Fishbein DP, et al. Predictive value of the Seattle Heart Failure Model in patients undergoing left ventricular assist device placement. J Heart Lung Transplant. 2010;29:1021–5.

    Article  PubMed  Google Scholar 

  25. Lietz K, Long JQ, Kfoury AG, et al. Outcomes of left ventricular assist device implantation as destination therapy in post-REMATCH era: implications for patient selection. Circulation. 2007;116:497–505.

    Article  PubMed  Google Scholar 

  26. Teuteberg J, Ewald G, Adamson R, et al. Risk assessment for continuous flow left ventricular assist devices: does the destination therapy risk score work? J Am Coll Cardiol. 2012;60:44–51.

    Article  PubMed  Google Scholar 

  27. Cowger J, Sundareswaran K, Rogers JG, et al. Predicting survival in patients receiving continuous flow left ventricular assist devices. J Am Coll Cardiol. 2013;61:313–21.

    Article  CAS  PubMed  Google Scholar 

  28. Thomas SS, Nahumi N, Han J, et al. Pre-operative mortality risk assessment in patients with continuous-flow left ventricular assist devices: applications of the HeartMate II risk score. J Heart Lung Transplant. 2014;33:675–81.

    Article  PubMed  Google Scholar 

  29. Schaffer JM, Allen JG, Weiss ES, et al. Evaluation of risk indices in continuous-flow left ventricular assist device patients. Ann Thorac Surg. 2009;88:18889–96.

    Article  Google Scholar 

  30. Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37:67–119.

    Article  PubMed  Google Scholar 

  31. Mehra MR, Kobashigawa J, Starling R, et al. Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates—2006. J Heart Lung Transplant. 2006;25:1024–42.

    Article  PubMed  Google Scholar 

  32. Bourge RC, Naftel DC, Costanzo-Nordin MR, et al. Pretransplantation risk factors for death after heart transplantation: a multiinstitutional study. The Transplant Cardiologists Research Database Group. J Heart Lung Transplant. 1993;12:549–62.

    CAS  PubMed  Google Scholar 

  33. Martin J, Siegenthaler MP, Friesewinkel O, et al. Implantable left ventricular assist device for treatment of pulmonary hypertension in candidates for orthotopic heart transplant—a preliminary study. Eur J Cardiothorac Surg. 2004;25:971–7.

    Article  PubMed  Google Scholar 

  34. Salzberg S, Lachat ML, Harbou KV, et al. Normalization of high pulmonary vascular resistance with LVAD support in heart transplantation candidates. Eur J Cardiothorac Surg. 2005;27:222–5.

    Article  PubMed  Google Scholar 

  35. Knutty RS, Parameshwar J, Lewis C, et al. Use of centrifugal left ventricular assist device as bridge to candidacy in severe heart failure with secondary pulmonary hypertension. Eur J Cardiothorac Surg. 2013;43:1237–42.

    Article  Google Scholar 

  36. Tsuashita M, Takayama H, Takeda K, et al. Effect of pulmonary vascular resistance before left ventricular assist device implantation on short-and long-term post-transplant survival. J Thorac Cardiovasc Surg. 2015;150:1352–60.

    Article  Google Scholar 

  37. Kavarana MN, Pessin-Minsley MS, Urtecho J, et al. Right ventricular dysfunction and organ failure in left ventricular assist device recipients: a continuing problem. Ann Thorac Surg. 2002;73:745–50.

    Article  PubMed  Google Scholar 

  38. Deng MC, Edwards LB, Hertz MI, et al. Mechanical circulatory support device database of the International Society for Heart and Lung Transplantation: third annual report—2005. J Heart Lung Transplant. 2005;24:1182–7.

    Article  PubMed  Google Scholar 

  39. Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist device. J Heart Lung Transplant. 2015;34:1123–30.

    Article  PubMed  Google Scholar 

  40. Hayek S, Sims DB, Markham DW, et al. Assessment of right ventricular function in left ventricular assist device candidates. Circ Cardiovasc Imaging. 2014;7:379–89.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). Appendix A: Adverse event definitions: adult and pediatric patients. 2013. https://www.uab.edu/medicine/intermacs/images/protocol_4.0/protocol_4.0_MoP/Appendix_A_INTERMACS_AE_Definitions__05152013.docx. Accessed September 28, 2016.

  42. Ochiai Y, McCarthy PM, Smedira NG, et al. Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: analysis of 245 patients. Circulation. 2002;106:I192–202.

    Article  Google Scholar 

  43. Dang NC, Topkara VK, Mercando M, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant. 2006;25:1–6.

    Article  PubMed  Google Scholar 

  44. Drakos SG, Janicki L, Horne BD, et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2010;105:1030–5.

    Article  PubMed  Google Scholar 

  45. Fitzpatrick JR 3rd, Frederick JR, Hsu VM, et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27:1286–92.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Matthews JG, Koelling TM, Pagani FD, et al. The right ventricular failure risk score. J Am Coll Cardiol. 2008;51:2163–72.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kormos RL, Teuteberg JJ, Pagani FD, et al. Right ventricular failure in patients with HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139:1316–24.

    Article  PubMed  Google Scholar 

  48. Korabathina R, Heffernan KS, Paruchuri V, et al. The pulmonary artery pulsatility index identifies severe right ventricular dysfunction in acute inferior myocardial infarction. Catheter Cardiovasc Interv. 2012;80:593–600.

    Article  PubMed  Google Scholar 

  49. Kang G, Ha R, Banerjee D. Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2016;35:67–73.

    Article  PubMed  Google Scholar 

  50. Morine KJ, Kiernan MS, Pham DT, et al. Pulmonary Artery Pulsatility Index is associated with right ventricular failure after left ventricular assist device surgery. J Card Fail. 2016;22:110–6.

    Article  PubMed  Google Scholar 

  51. Puwanant S, Hamilton KK, Klodell CT, et al. Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2008;27:1102–7.

    Article  PubMed  Google Scholar 

  52. Raina A, Seetha Rammohan HR, Gertz ZM, et al. Postoperative right ventricular failure after left ventricular assist device placement is predicted by preoperative echocardiographic structural, hemodynamic, and functional parameters. J Card Fail. 2013;19:16–24.

    Article  PubMed  Google Scholar 

  53. Potapov EV, Stepanenkko A, Dandel M, et al. Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant. 2008;27:1275–81.

    Article  PubMed  Google Scholar 

  54. Grant AD, Smedira NG, Starling RC, et al. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2012;60:521–8.

    Article  PubMed  Google Scholar 

  55. Kalogeropoulos AP, Al-Anbari R, Pekarek A, et al. The right ventricular function after left ventricular assist device (RVF-LVAD) study: rationale and preliminary results. Eur Heart J Cardiovasc Imaging. 2016;17:429–37.

    Article  PubMed  Google Scholar 

  56. Feldman D, Pamboukian SV, Teuteberg JJ, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32:157–87.

    Article  PubMed  Google Scholar 

  57. Romano MA, Cowger J, Aaronson KD, et al. Diagnosis and management of right-sided heart failure in subjects supported with left ventricular assist devices. Curr Treat Options Cardiovasc Med. 2010;12:420–30.

    Article  PubMed  Google Scholar 

  58. Fitzpatrick JR, Frederick JR, Hiesinger W, et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovasc Surg. 2009;137:971–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Robertson JO, Grau-Sepulveda MV, Okada S, et al. Concomitant tricuspid valve surgery during implantation of continuous-flow left ventricular assist devices: a Society of Thoracic Surgeons database analysis. J Heart Lung Transplant. 2014;33:609–17.

    Article  PubMed  Google Scholar 

  60. Zannad F, Mabazaa A, Juilliere Y, et al. Clinical profile, contemporary management and one-year mortality in patients with severe acute heart failure syndromes: the EFICA study. Eur J Heart Fail. 2006;8:697–705.

    Article  PubMed  Google Scholar 

  61. Smith GL, Lichtman JH, Bracken MB, et al. Renal impairment and outcomes in heart failure: systemic review and meta-analysis. J Am Card Coll. 2006;47:1987–96.

    Article  Google Scholar 

  62. Damman K, Navis G, Voors AV, et al. Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. J Card Fail. 2007;13:599–608.

    Article  PubMed  Google Scholar 

  63. Damman DK, Testani JM. The kidney in heart failure: an update. Eur Heart J. 2015;36:1437–44.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Butler J, Geisberg C, Howser R, et al. Relationship between renal function and left ventricular assist device use. Ann Thorac Surg. 2006;81:1745–51.

    Article  PubMed  Google Scholar 

  65. Sandner SE, Zimpfer D, Zrunek P, et al. Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg. 2009;87:1072–8.

    Article  PubMed  Google Scholar 

  66. Hasin T, Topilsky Y, Schirger JA, et al. Changes in renal function after implantation of continuous-flow left ventricular assist devices. J Am Coll Cardiol. 2012;59:26–36.

    Article  PubMed  Google Scholar 

  67. Genovese EA, Dew MA, Teuteberg JJ, et al. Early adverse events as predictors of 1-year mortality during mechanical circulatory support. J Heart Lung Transplant. 2010;29:981–8.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Coffin ST, Waquespack DR, Haglund NA, et al. Kidney dysfunction and left ventricular assist device support: a comprehensive perioperative review. Cardiorenal Med. 2015;5:48–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Patel AM, Adeseun GA, Ahmed I, et al. Renal failure in patients with left ventricular assist devices. Clin J Am Soc Nephrol. 2013;8:484–96.

    Article  PubMed  Google Scholar 

  70. Kim MS, Kato TS, Wu C, et al. Hepatic dysfunction in ambulatory patients with heart failure: a application of the MELD scoring system for outcome prediction. J Am Coll Cardiol. 2013;61:2253–61.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Russel SD, Rogers JG, Carmelo AM, et al. Renal and Hepatic function improve in advanced heart failure patients during continuous-flow support with the HeartMate II left ventricular assist device. Circulation. 2009;120:2352–7.

    Article  Google Scholar 

  72. Deo SV, Sharma V, Altarabsheh SE, et al. Hepatic and renal function with successful long-term support on a continuous flow left ventricular assist device. Heart Lung Circ. 2014;23:229–33.

    Article  PubMed  Google Scholar 

  73. Horwich TB, Kalantar-Zadeh K, MacLellan RW, et al. Albumin levels predict survival in patients with systolic heart failure. Am Heart J. 2008;155:883–9.

    Article  CAS  PubMed  Google Scholar 

  74. Lietz K, John R, Burke EA, et al. Pretransplant cachexia and morbid obesity are predictors of increased mortality after heart transplantation. Transplantation. 2001;72:277–83.

    Article  CAS  PubMed  Google Scholar 

  75. Brewer RJ, Lanfear DE, Sai-Sudhaker CB, et al. Extremes of body mass index do not impact mid-term survival after continuous-flow left ventricular assist device implantation. J Heart Lung Transplant. 2012;31:167–72.

    Article  PubMed  Google Scholar 

  76. Musci M, Loforte A, Potapov EV, et al. Body mass index and outcome after ventricular assist device placement. Ann Thorac Surg. 2008;86:1236–42.

    Article  PubMed  Google Scholar 

  77. Holdy K, Dembitsku W, Eaton LL, et al. Nutrition assessment and management of left ventricular assist device patients. J Heart Lung Transplant. 2005;24:1690–6.

    Article  PubMed  Google Scholar 

  78. John R. Current axial-flow devices—the HeartMateII and Jarvik 2000 left ventricular assist devices. Semin Thorac Cardiovasc Surg. 2008;20:264–72.

    Article  PubMed  Google Scholar 

  79. Ono M, Sawa Y, Nakatani T, et al. Japanese multicenter outcomes with the HeartMate II left ventricular assist device in patients with small body surface area. Circ J. 2016;80:1931–6.

    Article  PubMed  Google Scholar 

  80. Clerkin KJ, Naka Y, Mancini DM, et al. The impact of obesity on patients bridged to transplantation with continuous-flow left ventricular assist devices. JAAC Heart Fail. 2016;4:761–8.

    Article  Google Scholar 

  81. Raymond AL, Kfoury AG, Bishop CJ, et al. Obesity and left ventricular assist device driveline exit site infection. ASAIO. 2010;56:57–60.

    Article  Google Scholar 

  82. Mehra MR, Canter CE, Hannan MM, et al. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: a 10-year update. J Heart Lung Transplant. 2016;35:1–23.

    Article  PubMed  Google Scholar 

  83. Dhesi P, Simsir SA, Daneshvar D, et al. Left ventricular assist devices as “bridge to weight loss” prior to transplantation in obese patients with advanced heart failure. Ann Transplant. 2011;16:5–13.

    PubMed  Google Scholar 

  84. Adamson RM, Stahovich M, Chillcott S, et al. Clinical strategies and outcomes in advanced heart failure patients older than 70 years of age receiving the HeartMate II left ventricular assist device: a community hospital experience. J Am Coll Cardiol. 2011;57:2487–95.

    Article  PubMed  Google Scholar 

  85. Sandner SE, Zimpfer D, Zrunek P, et al. Age and outcome after continuous-flow left ventricular assist device implantation as bridge to transplantation. J Heart Lung Transplant. 2009;28:367–72.

    Article  PubMed  Google Scholar 

  86. Huang R, Deng M, Rogers JG, et al. Effect of age on outcomes after left ventricular assist device placement. Transplant Proc. 2006;38:1496–8.

    Article  CAS  PubMed  Google Scholar 

  87. Sieber CC. Frailty—from concept to clinical practice. Exp Gerontol. 2017;87(Pt B):160–7.

    Article  PubMed  Google Scholar 

  88. Flint KM, Matlock DD, Lindenfeld J, et al. Frailty and the selection of patients for destination therapy left ventricular assist device. Circ Heart Fail. 2012;5:286–93.

    Article  PubMed  Google Scholar 

  89. Fried LP, Tangen CM, Walston J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:146–57.

    Article  Google Scholar 

  90. Rockwood K, Stolee P, McDowell I, et al. J Am Geriatr Soc. 1996;44:578–82.

    Article  CAS  PubMed  Google Scholar 

  91. Purser JL, Kuchibhatla MN, Fillenbaum GG, et al. Identifying frailty in hospitalized older adults with significant coronary artery disease. J Am Geriatr Soc. 2006;54:1674–81.

    Article  PubMed  Google Scholar 

  92. Dunlay SM, Park SJ, Joyce LD, et al. Frailty and outcomes after implantation of left ventricular assist device as destination therapy. J Heart Lung Transplant. 2014;33:359–65.

    Article  PubMed  Google Scholar 

  93. Konstam V, Moser DK, De Jong MJ. Depression and anxiety in heart failure. J Card Fail. 2005;11:455–63.

    Article  PubMed  Google Scholar 

  94. Tsuchihashi-Makaya M, Kato N, Chishaki A, et al. Anxiety and poor social support are independently associated with adverse outcomes in patients with mild heart failure. Circ J. 2009;73:280–7.

    Article  PubMed  Google Scholar 

  95. Vaccarino V, Kasl SV, Abramson J, et al. Depressive symptoms and risk of functional decline and death in patients with heart failure. J Am Coll Cardiol. 2001;38:199–205.

    Article  CAS  PubMed  Google Scholar 

  96. Owen JE, Bonds CL, Wellisch DK. Psychiatric evaluations of heart transplant candidates: predicting post-transplant hospitalizations, rejection episodes, and survival. Psychosomatics. 2006;47:213–22.

    Article  PubMed  Google Scholar 

  97. Cupples S, Des MA, Grady KL, et al. Report of the Psychosocial Outcomes Workgroup of the Nursing and Social Sciences Council of the International Society for Heart and Lung Transplantation: present status of research on psychosocial outcomes in cardiothoracic transplantation: review and recommendations for the field. J Heart Lung Transplant. 2006;25:716–25.

    Article  PubMed  Google Scholar 

  98. Eshelman AK, Mason S, Nemeh H, et al. LVAD destination therapy: applying what we know about psychiatric evaluation and management from cardiac failure and transplant. Heart Fail Rev. 2009;14:21–8.

    Article  PubMed  Google Scholar 

  99. Topilsky Y, Pereira NL, Shah DK, et al. Left ventricular assist device therapy in patients with restrictive and hypertrophic cardiomyopathy. Circ Heart Fail. 2011;4:266–75.

    Article  PubMed  Google Scholar 

  100. Rose AG, Connelly JH, Park SJ, et al. Total left ventricular outflow tract obstruction due to left ventricular assist device-induced sub-aortic thrombosis in 2 patients with aortic valve bioprosthesis. J Heart Lung Transplant. 2003;22:594–9.

    Article  PubMed  Google Scholar 

  101. Pelletier MP, Chang CP, Vagelos R, et al. Alternative approach for use of a left ventricular assist device with a thrombosed prosthetic valve. J Heart Lung Transplant. 2002;21:402–4.

    Article  PubMed  Google Scholar 

  102. Mokashi SA, Schmitto LS, James LD, et al. Ventricular assist device in patients with prosthetic heart valves. Artif Organs. 2010;34:1030–4.

    Article  PubMed  Google Scholar 

  103. Swartz MT, Lowdermilk GA, Moroney DA, et al. Ventricular assist device support in patients with mechanical heart valves. Ann Thorac Surg. 1999;68:2248–51.

    Article  CAS  PubMed  Google Scholar 

  104. Tisol WB, Mueller DK, Hoy FB, et al. Ventricular assist device use with mechanical heart valves: an outcome series and literature review. Ann Thorac Surg. 2001;72:2051–4.

    Article  CAS  PubMed  Google Scholar 

  105. Rao V, Slater JP, Edwards NM, et al. Surgical management of valvular disease in patients requiring left ventricular assist device support. Ann Thorac. 2001;71:1448–53.

    Article  CAS  Google Scholar 

  106. Holley CT, Fitzpatrick M, Roy SS, et al. Aortic insufficiency in continuous-flow left ventricular assist device support patients is common but does not impact long-term mortality. J Heart Lung Transplant. 2017;36(1):91–6.

    Article  PubMed  Google Scholar 

  107. Letsou GV, Connely JH, Delgado RM, et al. Is native aortic valve commissural fusion in patients with long-term left ventricular assist devices associated with clinically important aortic insufficiency? J Heart Lung Transplant. 2006;25:395–9.

    Article  PubMed  Google Scholar 

  108. Robertson JO, Naftel DC, Myers SL, et al. Concomitant aortic valve procedures in patients undergoing implantation of continuous-flow left ventricular assist devices: an INTERMACS database analysis. J Heart Lung Transplant. 2015;34:797–805.

    Article  PubMed  Google Scholar 

  109. Wang TS, Hernandez AF, Felker M, et al. Valvular heart disease in patients supported with left ventricular assist devices. Circ Heart Fail. 2014;7:215–22.

    Article  PubMed  Google Scholar 

  110. Maltais S, Topilsky Y, Tchantchaleishivili V, et al. Surgical treatment of tricuspid valve insufficiency promotes early reverse remodeling in patients with axial-flow left ventricular devices. J Thorac Cardiovasc Surg. 2012;143:1370–6.

    Article  PubMed  Google Scholar 

  111. Piacentino V 3rd, Ganapathi AM, Stafford-Smith M, et al. Utility of concomitant tricuspid valve procedures for patients undergoing implantation of a continuous-flow left ventricular device. J Thorac Cardiovasc Surg. 2012;144:1217–21.

    Article  PubMed  Google Scholar 

  112. Saeed D, Kidambi T, Shalli S, et al. Tricuspid valve repair with left ventricular assist device implantation: is it warranted? J Heart Lung Transplant. 2011;30:530–5.

    Article  PubMed  Google Scholar 

  113. Atluri P, Fairman AS, MacArthur JW, et al. Continuous flow left ventricular assist device implant significantly improves pulmonary hypertension, right ventricular contractility, and tricuspid valve competence. J Card Surg. 2013;28:770–5.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lee S, Kamdar R, Madlon-Kay R, et al. Effects of the HeartMate II continuous-flow left ventricular assist device on right ventricular function. J Heart Lung Transplant. 2010;29:209–15.

    Article  PubMed  Google Scholar 

  115. Loforte A, Violini R, Musumeci F. Transcatheter closure of patent foramen ovale for hypoxemia during left ventricular assist device support. J Card Surg. 2012;27:528–9.

    Article  PubMed  Google Scholar 

  116. Bartoli CR, McCants KC, Birks EJ, et al. Percutaneous closure of a patent foramen ovale to prevent paradoxical thromboembolism in a patient with a continuous-flow LVAD. J Invasive Cardiol. 2013;25:154–6.

    PubMed  Google Scholar 

  117. Wiklund L, Svensson S, Berggren H. Implantation of a left ventricular assist device, back-to-front, in an adolescent with a failing mustard procedure. J Thorac Cardiovasc Surg. 1999;118:755–6.

    Article  CAS  PubMed  Google Scholar 

  118. Menachem JN, Swaminathan AC, Bashore TM, et al. Initial experience of left ventricular assist device support for adult patients with transposition of the great vessels. Congenit Heart Dis. 2015;10:382–6.

    Article  PubMed  Google Scholar 

  119. Halbreiner MS, Soltesz E, Starling R, et al. Current practice in patient selection for long-term mechanical circulatory support. Curr Heart Fail Rep. 2015;12:120–9.

    Article  CAS  PubMed  Google Scholar 

  120. Jorde UP, Kushwaha SS, Tatooles AJ, et al. Results of the destination therapy post-food and drug administration approval study with continuous flow left ventricular assist device: a prospective study using the INTERMACS registry. J Am Coll Cardiol. 2014;63:1751–7.

    Article  PubMed  Google Scholar 

  121. Grady KL, Naftel D, Stevenson L, et al. Overall Quality of life improves to similar levels after mechanical circulatory support regardless of severity of heart failure before implantation. J Heart Lung Transplant. 2014;33:412–21.

    Article  PubMed  Google Scholar 

  122. Rogers JG, Butler J, Lansman SL, et al. Chronic mechanical circulatory support for inotrope-dependent heart failure patients who are not transplant candidates: results of the INTrEPID Trial. J Am Coll Cardiol. 2007;50:741–7.

    Article  PubMed  Google Scholar 

  123. Estep JD, Starling RC, Horstmanshof DA, et al. Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: results from the ROADMAP study. J Am Coll Cardiol. 2015;66:1747–61.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew B. Civitello M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lai, C.S.C., Civitello, A.B. (2018). Who Is an Appropriate Candidate for Long-Term MCS?: The Art of Patient Selection. In: Morgan, J., Civitello, A., Frazier, O. (eds) Mechanical Circulatory Support for Advanced Heart Failure . Springer, Cham. https://doi.org/10.1007/978-3-319-65364-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65364-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65363-1

  • Online ISBN: 978-3-319-65364-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics