Skip to main content

Introduction to Conformal Mappings

  • Chapter
  • First Online:
Schramm–Loewner Evolution

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 24))

  • 878 Accesses

Abstract

In this chapter we present briefly some results of complex analysis which are useful for our theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Harmonicity is preserved by any holomorphic change of coordinates.

  2. 2.

    Or the special cases of this form as a or b tends to infinity so that \(\lambda a\) or \(\lambda b^{-1}\) remains finite, respectively.

  3. 3.

    A curve is Jordan if it is simple closed curve. A domain is Jordan if it’s boundary is Jordan curve.

  4. 4.

    The function h is odd if \(h(-z)=-h(z)\).

  5. 5.

    Remember that a curve is rectifiable, if its arc length is finite, and also that \(\int \mathrm {d}^2 z\) denotes the integral with respect to the Lebesgue area measure and \(\int |\mathrm {d}z|\) is the integral w.r.t. the arc length measure.

References

  1. Ahlfors, L.V.: Complex Analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable, 3rd edn. McGraw-Hill Book Co., New York (1978). International Series in Pure and Applied Mathematics

    Google Scholar 

  2. Ahlfors, L.V.: Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg (1973). McGraw-Hill Series in Higher Mathematics

    Google Scholar 

  3. Duren, P.L.: Univalent Functions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259. Springer-Verlag, New York (1983)

    Google Scholar 

  4. Garnett, J.B., Marshall, D.E.: Harmonic Measure, New Mathematical Monographs, vol. 2. Cambridge University Press, Cambridge (2008). Reprint of the 2005 original

    Google Scholar 

  5. Greene, R.E., Krantz, S.G.: Function theory of one complex variable, Graduate Studies in Mathematics, vol. 40, 3rd edn. American Mathematical Society, Providence, RI (2006). https://doi.org/10.1090/gsm/040

  6. Pommerenke, C.: Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 299. Springer-Verlag, Berlin (1992). https://doi.org/10.1007/978-3-662-02770-7

  7. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill Book Co., New York (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antti Kemppainen .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kemppainen, A. (2017). Introduction to Conformal Mappings. In: Schramm–Loewner Evolution. SpringerBriefs in Mathematical Physics, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-65329-7_3

Download citation

Publish with us

Policies and ethics