Skip to main content

Graft Failure and Rejection in Haploidentical Stem Cell Transplantation

  • Chapter
  • First Online:
Haploidentical Stem Cell Transplantation

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

  • 436 Accesses

Abstract

Haploidentical SCT is increasingly used for patients without a suitable HLA-identical sibling donor that requires an urgent transplantation. Graft failure (GF) is defined by the inability to achieve donor cell engraftment or donor graft loss after initial engraftment, and manifests with severe pancytopenia and marrow aplasia. GF can be mediated by cellular of humoral immunity. Other causes are infections, drugs, HLA and major ABO-mismatch, low cell dose in the graft, T-cell depletion, umbilical cord SCT, and reduced intensity conditioning regimens. The overall rate of GF in alloSCT is 5.6%. In haploSCT the rate is variable (0–27%) according to the graft source and content, conditioning regimen, T-cell depletion and GvHD prophylaxis. Despite the excellent results with modern techniques, graft rejection remains a potential complication in up to 10% of patients undergoing haploSCT with any approach, and is usually related to donor HLA-specific antibodies. There is no good quality evidence regarding the best treatment for graft failure, although performing a second transplant is the preferred approach. Infusion of hematopoietic growth factors and Mesenchymal stromal cells has also been used, but the prognosis remains challenging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354:1813–26. doi:10.1056/NEJMra052638.

    Article  CAS  PubMed  Google Scholar 

  2. Moraleda JM, Iniesta F, Sánchez-Salinas A. Trasplante de progenitores hematopoyéticos. In: Moraleda JM (ed) Pregr. Hematol., 3rd ed. Luzán 5, Madrid; 2011. pp 481–516.

    Google Scholar 

  3. Gratwohl A, Pasquini MC, Aljurf M, et al. One million haemopoietic stem-cell transplants: a retrospective observational study. Lancet Haematol. 2015;2:e91–100. doi:10.1016/S2352-3026(15)00028-9.

    Article  PubMed  Google Scholar 

  4. Passweg JR, Baldomero H, Bader P, et al. Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually. Bone Marrow Transplant. 2016;51:786–92. doi:10.1038/bmt.2016.20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Switzer GE, Bruce JG, Myaskovsky L, et al. Race and ethnicity in decisions about unrelated hematopoietic stem cell donation. Blood. 2013;121:1469–76. doi:10.1182/blood-2012-06-437343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gragert L, Eapen M, Williams E, et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. N Engl J Med. 2014;371:339–48. doi:10.1056/NEJMsa1311707.

    Article  CAS  PubMed  Google Scholar 

  7. Pidala J, Kim J, Schell M, et al. Race/ethnicity affects the probability of finding an HLA-A, -B, -C and -DRB1 allele-matched unrelated donor and likelihood of subsequent transplant utilization. Bone Marrow Transplant. 2013;48:346–50. doi:10.1038/bmt.2012.150.

    Article  CAS  PubMed  Google Scholar 

  8. Bart T, Boo M, Balabanova S, et al. Impact of selection of cord blood units from the United States and Swiss registries on the cost of banking operations. Transfus Med Hemother Off Organ Dtsch Ges Transfusionsmedizin Immunhamatol. 2013;40:14–20. doi:10.1159/000345690.

    Article  Google Scholar 

  9. Raj K, Pagliuca A, Bradstock K, et al. Peripheral blood hematopoietic stem cells for transplantation of hematological diseases from related, haploidentical donors after reduced-intensity conditioning. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2014;20:890–5. doi:10.1016/j.bbmt.2014.03.003.

    Article  Google Scholar 

  10. Zahid MF, Rizzieri DA. Haploidentical hematopoietic stem cell transplantation: expanding the horizon for hematologic disorders. Adv Hematol. 2016;2016:1423493. doi:10.1155/2016/1423493.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Laughlin MJ, Eapen M, Rubinstein P, et al. Outcomes after transplantation of cord blood or bone marrow from unrelated donors in adults with leukemia. N Engl J Med. 2004;351:2265–75. doi:10.1056/NEJMoa041276.

    Article  CAS  PubMed  Google Scholar 

  12. Rocha V, Labopin M, Sanz G, et al. Transplants of umbilical-cord blood or bone marrow from unrelated donors in adults with acute leukemia. N Engl J Med. 2004;351:2276–85. doi:10.1056/NEJMoa041469.

    Article  CAS  PubMed  Google Scholar 

  13. Sanz J, Sanz MA, Saavedra S, et al. Cord blood transplantation from unrelated donors in adults with high-risk acute myeloid leukemia. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2010;16:86–94. doi:10.1016/j.bbmt.2009.09.001.

    Article  Google Scholar 

  14. Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood. 2013;122:491–8. doi:10.1182/blood-2013-02-453175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Munoz J, Shah N, Rezvani K, et al. Concise review: umbilical cord blood transplantation: past, present, and future. Stem Cells Transl Med. 2014;3:1435–43. doi:10.5966/sctm.2014-0151.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kekre N, Antin JH. Hematopoietic stem cell transplantation donor sources in the 21st century: choosing the ideal donor when a perfect match does not exist. Blood. 2014;124:334–43. doi:10.1182/blood-2014-02-514760.

    Article  CAS  PubMed  Google Scholar 

  17. Kanakry CG, Fuchs EJ, Luznik L. Modern approaches to HLA-haploidentical blood or marrow transplantation. Nat Rev Clin Oncol. 2016;13:10–24. doi:10.1038/nrclinonc.2015.128.

    Article  CAS  PubMed  Google Scholar 

  18. Bacigalupo A, Sica S. HLA haplotype mismatch transplants and posttransplant cyclophosphamide. Adv Hematol. 2016;2016:7802967. doi:10.1155/2016/7802967.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Morishima Y, Yabe T, Matsuo K, et al. Effects of HLA allele and killer immunoglobulin-like receptor ligand matching on clinical outcome in leukemia patients undergoing transplantation with T-cell-replete marrow from an unrelated donor. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2007;13:315–28. doi:10.1016/j.bbmt.2006.10.027.

    Article  CAS  Google Scholar 

  20. Anasetti C, Beatty PG, Storb R, et al. Effect of HLA incompatibility on graft-versus-host disease, relapse, and survival after marrow transplantation for patients with leukemia or lymphoma. Hum Immunol. 1990;29:79–91.

    Article  CAS  PubMed  Google Scholar 

  21. Szydlo R, Goldman JM, Klein JP, et al. Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. J Clin Oncol Off J Am Soc Clin Oncol. 1997;15:1767–77. doi:10.1200/jco.1997.15.5.1767.

    Article  CAS  Google Scholar 

  22. Kawase T, Morishima Y, Matsuo K, et al. High-risk HLA allele mismatch combinations responsible for severe acute graft-versus-host disease and implication for its molecular mechanism. Blood. 2007;110:2235–41. doi:10.1182/blood-2007-02-072405.

    Article  CAS  PubMed  Google Scholar 

  23. Aversa F, Terenzi A, Tabilio A, et al. Full haplotype-mismatched hematopoietic stem-cell transplantation: a phase II study in patients with acute leukemia at high risk of relapse. J Clin Oncol. 2005;23:3447–54. doi:10.1200/JCO.2005.09.117.

    Article  PubMed  Google Scholar 

  24. Lu D-P, Dong L, Wu T, et al. Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcomes with HLA-identical sibling transplantation. Blood. 2006;107:3065–73. doi:10.1182/blood-2005-05-2146.

    Article  CAS  PubMed  Google Scholar 

  25. O’Donnell PV, Luznik L, Jones RJ, et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2002;8:377–86.

    Article  Google Scholar 

  26. Luznik L, O’Donnell PV, Symons HJ, et al. HLA-haploidentical bone marrow transplantation for hematologic malignancies using nonmyeloablative conditioning and high-dose, posttransplantation cyclophosphamide. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2008;14:641–50. doi:10.1016/j.bbmt.2008.03.005.

    Article  CAS  Google Scholar 

  27. Chen X-H, Gao L, Zhang X, et al. HLA-haploidentical blood and bone marrow transplantation with anti-thymocyte globulin: long-term comparison with HLA-identical sibling transplantation. Blood Cells Mol Dis. 2009;43:98–104. doi:10.1016/j.bcmd.2009.02.005.

    Article  CAS  PubMed  Google Scholar 

  28. Bashey A, Zhang X, Sizemore CA, et al. T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31:1310–6. doi:10.1200/JCO.2012.44.3523.

    Article  CAS  Google Scholar 

  29. Kanakry JA, Kasamon YL, Gocke CD, et al. Outcomes of related donor HLA-identical or HLA-haploidentical allogeneic blood or marrow transplantation for peripheral T cell lymphoma. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2013;19:602–6. doi:10.1016/j.bbmt.2013.01.006.

    Article  CAS  Google Scholar 

  30. Raiola AM, Dominietto A, di Grazia C, et al. Unmanipulated haploidentical transplants compared with other alternative donors and matched sibling grafts. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2014;20:1573–9. doi:10.1016/j.bbmt.2014.05.029.

    Article  Google Scholar 

  31. Di Stasi A, Milton DR, Poon LM, et al. Similar transplantation outcomes for acute myeloid leukemia and myelodysplastic syndrome patients with haploidentical versus 10/10 human leukocyte antigen-matched unrelated and related donors. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2014;20:1975–81. doi:10.1016/j.bbmt.2014.08.013.

    Article  Google Scholar 

  32. Bashey A, Zhang X, Jackson K, et al. Comparison of outcomes of hematopoietic cell transplants from T-replete Haploidentical donors using post-transplantation cyclophosphamide with 10 of 10 HLA-A, -B, -C, -DRB1, and -DQB1 allele-matched unrelated donors and HLA-identical sibling donors: a multivariable analysis including disease risk index. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2016;22:125–33. doi:10.1016/j.bbmt.2015.09.002.

    Article  CAS  Google Scholar 

  33. Luo Y, Xiao H, Lai X, et al. T-cell-replete haploidentical HSCT with low-dose anti-T-lymphocyte globulin compared with matched sibling HSCT and unrelated HSCT. Blood. 2014;124:2735–43. doi:10.1182/blood-2014-04-571570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bethge WA, Faul C, Bornhäuser M, et al. Haploidentical allogeneic hematopoietic cell transplantation in adults using CD3/CD19 depletion and reduced intensity conditioning: an update. Blood Cells Mol Dis. 2008;40:13–9. doi:10.1016/j.bcmd.2007.07.001.

    Article  CAS  PubMed  Google Scholar 

  35. Lang P, Teltschik H-M, Feuchtinger T, et al. Transplantation of CD3/CD19 depleted allografts from haploidentical family donors in paediatric leukaemia. Br J Haematol. 2014;165:688–98. doi:10.1111/bjh.12810.

    Article  CAS  PubMed  Google Scholar 

  36. Handgretinger R. New approaches to graft engineering for haploidentical bone marrow transplantation. Semin Oncol. 2012;39:664–73. doi:10.1053/j.seminoncol.2012.09.007.

    Article  CAS  PubMed  Google Scholar 

  37. Balashov D, Shcherbina A, Maschan M, et al. Single-center experience of unrelated and Haploidentical stem cell transplantation with TCRαβ and CD19 depletion in children with primary immunodeficiency syndromes. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2015;21:1955–62. doi:10.1016/j.bbmt.2015.07.008.

    Article  Google Scholar 

  38. Mayumi H, Umesue M, Nomoto K. Cyclophosphamide-induced immunological tolerance: an overview. Immunobiology. 1996;195:129–39. doi:10.1016/S0171-2985(96)80033-7.

    Article  CAS  PubMed  Google Scholar 

  39. Luznik L, Jalla S, Engstrom LW, et al. Durable engraftment of major histocompatibility complex-incompatible cells after nonmyeloablative conditioning with fludarabine, low-dose total body irradiation, and posttransplantation cyclophosphamide. Blood. 2001;98:3456–64.

    Article  CAS  PubMed  Google Scholar 

  40. Luznik L, Engstrom LW, Iannone R, Fuchs EJ. Posttransplantation cyclophosphamide facilitates engraftment of major histocompatibility complex-identical allogeneic marrow in mice conditioned with low-dose total body irradiation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2002;8:131–8.

    Article  CAS  Google Scholar 

  41. Jones RJ, Barber JP, Vala MS, et al. Assessment of aldehyde dehydrogenase in viable cells. Blood. 1995;85:2742–6.

    CAS  PubMed  Google Scholar 

  42. Ross D, Jones M, Komanduri K, Levy RB. Antigen and lymphopenia-driven donor T cells are differentially diminished by post-transplantation administration of cyclophosphamide after hematopoietic cell transplantation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2013;19:1430–8. doi:10.1016/j.bbmt.2013.06.019.

    Article  CAS  Google Scholar 

  43. Kanakry CG, Ganguly S, Zahurak M, et al. Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Transl Med. 2013;5:211ra157. doi:10.1126/scitranslmed.3006960.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ganguly S, Ross DB, Panoskaltsis-Mortari A, et al. Donor CD4+ Foxp3+ regulatory T cells are necessary for posttransplantation cyclophosphamide-mediated protection against GVHD in mice. Blood. 2014;124:2131–41. doi:10.1182/blood-2013-10-525873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cieri N, Oliveira G, Greco R, et al. Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation. Blood. 2015;125:2865–74. doi:10.1182/blood-2014-11-608539.

    Article  CAS  PubMed  Google Scholar 

  46. Roberto A, Castagna L, Zanon V, et al. Role of naive-derived T memory stem cells in T-cell reconstitution following allogeneic transplantation. Blood. 2015;125:2855–64. doi:10.1182/blood-2014-11-608406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Khan F, Agarwal A, Agrawal S. Significance of chimerism in hematopoietic stem cell transplantation: new variations on an old theme. Bone Marrow Transplant. 2004;34:1–12. doi:10.1038/sj.bmt.1704525.

    Article  CAS  PubMed  Google Scholar 

  48. Mattsson J, Ringdén O, Storb R. Graft failure after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2008;14:165–70. doi:10.1016/j.bbmt.2007.10.025.

    Article  Google Scholar 

  49. Locatelli F, Lucarelli B, Merli P. Current and future approaches to treat graft failure after allogeneic hematopoietic stem cell transplantation. Expert Opin Pharmacother. 2014;15:23–36. doi:10.1517/14656566.2014.852537.

    Article  CAS  PubMed  Google Scholar 

  50. Olsson R, Remberger M, Schaffer M, et al. Graft failure in the modern era of allogeneic hematopoietic SCT. Bone Marrow Transplant. 2013;48:537–43. doi:10.1038/bmt.2012.239.

    Article  CAS  PubMed  Google Scholar 

  51. Kato M, Matsumoto K, Suzuki R, et al. Salvage allogeneic hematopoietic SCT for primary graft failure in children. Bone Marrow Transplant. 2013;48:1173–8. doi:10.1038/bmt.2013.36.

    Article  CAS  PubMed  Google Scholar 

  52. Lowsky R, Messner H. Mechanisms and treatment of graft failure. In: Appelbaum FR, Forman SJ, Negrin RS, Blume K (eds) Thomas’ Hematopoietic cell transplantation: Stem cell transplantation, 4th ed. John Wiley & Sons, Ltd; 2015. pp 944–958.

    Google Scholar 

  53. Storb R, Prentice RL, Thomas ED. Marrow transplantation for treatment of aplastic anemia. An analysis of factors associated with graft rejection. N Engl J Med. 1977;296:61–6. doi:10.1056/NEJM197701132960201.

    Article  CAS  PubMed  Google Scholar 

  54. Anasetti C, Amos D, Beatty PG, et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med. 1989;320:197–204. doi:10.1056/NEJM198901263200401.

    Article  CAS  PubMed  Google Scholar 

  55. Petersdorf EW, Gooley TA, Anasetti C, et al. Optimizing outcome after unrelated marrow transplantation by comprehensive matching of HLA class I and II alleles in the donor and recipient. Blood. 1998;92:3515–20.

    CAS  PubMed  Google Scholar 

  56. Remberger M, Watz E, Ringdén O, et al. Major ABO blood group mismatch increases the risk for graft failure after unrelated donor hematopoietic stem cell transplantation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2007;13:675–82. doi:10.1016/j.bbmt.2007.01.084.

    Article  Google Scholar 

  57. Crocchiolo R, Ciceri F, Fleischhauer K, et al. HLA matching affects clinical outcome of adult patients undergoing haematopoietic SCT from unrelated donors: a study from the Gruppo Italiano Trapianto di Midollo Osseo and Italian Bone Marrow Donor Registry. Bone Marrow Transplant. 2009;44:571–7. doi:10.1038/bmt.2009.67.

    Article  CAS  PubMed  Google Scholar 

  58. Hauzenberger D, Schaffer M, Ringdén O, et al. Outcome of haematopoietic stem cell transplantation in patients transplanted with matched unrelated donors vs allele-mismatched donors: a single centre study. Tissue Antigens. 2008;72:549–58. doi:10.1111/j.1399-0039.2008.01148.x.

    Article  CAS  PubMed  Google Scholar 

  59. Slavin S, Nagler A, Naparstek E, et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and nonmalignant hematologic diseases. Blood. 1998;91:756–63.

    CAS  PubMed  Google Scholar 

  60. van Heeckeren WJ, Fanning LR, Meyerson HJ, et al. Influence of human leucocyte antigen disparity and graft lymphocytes on allogeneic engraftment and survival after umbilical cord blood transplant in adults. Br J Haematol. 2007;139:464–74. doi:10.1111/j.1365-2141.2007.06824.x.

    Article  PubMed  Google Scholar 

  61. Barker JN, Weisdorf DJ, DeFor TE, et al. Transplantation of 2 partially HLA-matched umbilical cord blood units to enhance engraftment in adults with hematologic malignancy. Blood. 2005;105:1343–7. doi:10.1182/blood-2004-07-2717.

    Article  CAS  PubMed  Google Scholar 

  62. Ferrà C, Sanz J, Díaz-Pérez M-A, et al. Outcome of graft failure after allogeneic stem cell transplant: study of 89 patients. Leuk Lymphoma. 2015;56:656–62. doi:10.3109/10428194.2014.930849.

    Article  PubMed  Google Scholar 

  63. Martin PJ, Akatsuka Y, Hahne M, Sale G. Involvement of donor T-cell cytotoxic effector mechanisms in preventing allogeneic marrow graft rejection. Blood. 1998;92:2177–81.

    CAS  PubMed  Google Scholar 

  64. Westerhuis G, Maas WGE, Willemze R, et al. Long-term mixed chimerism after immunologic conditioning and MHC-mismatched stem-cell transplantation is dependent on NK-cell tolerance. Blood. 2005;106:2215–20. doi:10.1182/blood-2005-04-1391.

    Article  CAS  PubMed  Google Scholar 

  65. Cutler C, Kim HT, Sun L, et al. Donor-specific anti-HLA antibodies predict outcome in double umbilical cord blood transplantation. Blood. 2011;118:6691–7. doi:10.1182/blood-2011-05-355263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yoshihara S, Ikegame K, Taniguchi K, et al. Salvage haploidentical transplantation for graft failure using reduced-intensity conditioning. Bone Marrow Transplant. 2012;47:369–73. doi:10.1038/bmt.2011.84.

    Article  CAS  PubMed  Google Scholar 

  67. Focosi D, Zucca A, Scatena F. The role of anti-HLA antibodies in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2011;17:1585–8. doi:10.1016/j.bbmt.2011.06.004.

    Article  CAS  Google Scholar 

  68. Ciurea SO, de Lima M, Cano P, et al. High risk of graft failure in patients with anti-HLA antibodies undergoing haploidentical stem-cell transplantation. Transplantation. 2009;88:1019–24. doi:10.1097/TP.0b013e3181b9d710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gladstone DE, Zachary AA, Fuchs EJ, et al. Partially mismatched transplantation and human leukocyte antigen donor-specific antibodies. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2013;19:647–52. doi:10.1016/j.bbmt.2013.01.016.

    Article  CAS  Google Scholar 

  70. Drobyski WR, Klein J, Flomenberg N, et al. Superior survival associated with transplantation of matched unrelated versus one-antigen-mismatched unrelated or highly human leukocyte antigen-disparate haploidentical family donor marrow grafts for the treatment of hematologic malignancies: establishing a treatment algorithm for recipients of alternative donor grafts. Blood. 2002;99:806–14.

    Article  CAS  PubMed  Google Scholar 

  71. Wang Y, Liu D-H, Xu L-P, et al. Superior graft-versus-leukemia effect associated with transplantation of haploidentical compared with HLA-identical sibling donor grafts for high-risk acute leukemia: an historic comparison. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2011;17:821–30. doi:10.1016/j.bbmt.2010.08.023.

    Article  Google Scholar 

  72. Cho B-S, Yoon J-H, Shin S-H, et al. Comparison of allogeneic stem cell transplantation from familial-mismatched/haploidentical donors and from unrelated donors in adults with high-risk acute myelogenous leukemia. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2012;18:1552–63. doi:10.1016/j.bbmt.2012.04.008.

    Article  Google Scholar 

  73. Chen Y-B, Aldridge J, Kim HT, et al. Reduced-intensity conditioning stem cell transplantation: comparison of double umbilical cord blood and unrelated donor grafts. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2012;18:805–12. doi:10.1016/j.bbmt.2011.10.016.

    Article  Google Scholar 

  74. Brunstein CG, Barker JN, Weisdorf DJ, et al. Umbilical cord blood transplantation after nonmyeloablative conditioning: impact on transplantation outcomes in 110 adults with hematologic disease. Blood. 2007;110:3064–70. doi:10.1182/blood-2007-04-067215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brunstein CG, Fuchs EJ, Carter SL, et al. Alternative donor transplantation after reduced intensity conditioning: results of parallel phase 2 trials using partially HLA-mismatched related bone marrow or unrelated double umbilical cord blood grafts. Blood. 2011;118:282–8. doi:10.1182/blood-2011-03-344853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Marmont AM, Horowitz MM, Gale RP, et al. T-cell depletion of HLA-identical transplants in leukemia. Blood. 1991;78:2120–30.

    CAS  PubMed  Google Scholar 

  77. Ash RC, Horowitz MM, Gale RP, et al. Bone marrow transplantation from related donors other than HLA-identical siblings: effect of T cell depletion. Bone Marrow Transplant. 1991;7:443–52.

    CAS  PubMed  Google Scholar 

  78. Suchin EJ, Langmuir PB, Palmer E, et al. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J Immunol Baltim Md 1950. 2001;166:973–81.

    CAS  Google Scholar 

  79. Schwartz E, Lapidot T, Gozes D, et al. Abrogation of bone marrow allograft resistance in mice by increased total body irradiation correlates with eradication of host clonable T cells and alloreactive cytotoxic precursors. J Immunol Baltim Md 1950. 1987;138:460–5.

    CAS  Google Scholar 

  80. Bachar-Lustig E, Rachamim N, Li HW, et al. Megadose of T cell-depleted bone marrow overcomes MHC barriers in sublethally irradiated mice. Nat Med. 1995;1:1268–73.

    Article  CAS  PubMed  Google Scholar 

  81. Reisner Y, Gur H, Reich-Zeliger S, et al. Hematopoietic stem cell transplantation across major genetic barriers: tolerance induction by megadose CD34 cells and other veto cells. Ann N Y Acad Sci. 2003;996:72–9.

    Article  CAS  PubMed  Google Scholar 

  82. Aversa F, Tabilio A, Velardi A, et al. Treatment of high-risk acute leukemia with T-cell-depleted stem cells from related donors with one fully mismatched HLA haplotype. N Engl J Med. 1998;339:1186–93. doi:10.1056/NEJM199810223391702.

    Article  CAS  PubMed  Google Scholar 

  83. Ciceri F, Labopin M, Aversa F, et al. A survey of fully haploidentical hematopoietic stem cell transplantation in adults with high-risk acute leukemia: a risk factor analysis of outcomes for patients in remission at transplantation. Blood. 2008;112:3574–81. doi:10.1182/blood-2008-02-140095.

    Article  CAS  PubMed  Google Scholar 

  84. Lang P, Mueller I, Greil J, et al. Retransplantation with stem cells from mismatched related donors after graft rejection in pediatric patients. Blood Cells Mol Dis. 2008;40:33–9. doi:10.1016/j.bcmd.2007.06.027.

    Article  PubMed  Google Scholar 

  85. Klingebiel T, Cornish J, Labopin M, et al. Results and factors influencing outcome after fully haploidentical hematopoietic stem cell transplantation in children with very high-risk acute lymphoblastic leukemia: impact of center size: an analysis on behalf of the Acute Leukemia and Pediatric Disease Working Parties of the European Blood and Marrow Transplant group. Blood. 2010;115:3437–46. doi:10.1182/blood-2009-03-207001.

    Article  CAS  PubMed  Google Scholar 

  86. Bertaina A, Merli P, Rutella S, et al. HLA-haploidentical stem cell transplantation after removal of αβ+ T and B cells in children with nonmalignant disorders. Blood. 2014;124:822–6. doi:10.1182/blood-2014-03-563817.

    Article  CAS  PubMed  Google Scholar 

  87. Lang P, Feuchtinger T, Teltschik H-M, et al. Improved immune recovery after transplantation of TCRαβ/CD19-depleted allografts from haploidentical donors in pediatric patients. Bone Marrow Transplant. 2015;50(Suppl 2):S6–10. doi:10.1038/bmt.2015.87.

    Article  CAS  PubMed  Google Scholar 

  88. Im HJ, Koh KN, Suh JK, et al. Haploidentical HCT using an αβ T-cell-depleted graft with targeted αβ(+) cells by add-back after a reduced intensity preparative regimen containing low-dose TBI. Bone Marrow Transplant. 2016;51:1217–22. doi:10.1038/bmt.2016.114.

    Article  CAS  PubMed  Google Scholar 

  89. Maschan M, Shelikhova L, Ilushina M, et al. TCR-alpha/beta and CD19 depletion and treosulfan-based conditioning regimen in unrelated and haploidentical transplantation in children with acute myeloid leukemia. Bone Marrow Transplant. 2016;51:668–74. doi:10.1038/bmt.2015.343.

    Article  CAS  PubMed  Google Scholar 

  90. Ji S-Q, Chen H-R, Wang H-X, et al. G-CSF-primed haploidentical marrow transplantation without ex vivo T cell depletion: an excellent alternative for high-risk leukemia. Bone Marrow Transplant. 2002;30:861–6. doi:10.1038/sj.bmt.1703769.

    Article  PubMed  Google Scholar 

  91. Ji S-Q, Chen H-R, Yan H-M, et al. Anti-CD25 monoclonal antibody (basiliximab) for prevention of graft-versus-host disease after haploidentical bone marrow transplantation for hematological malignancies. Bone Marrow Transplant. 2005;36:349–54. doi:10.1038/sj.bmt.1705046.

    Article  CAS  PubMed  Google Scholar 

  92. Huang X-J, Liu D-H, Liu K-Y, et al. Haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion for the treatment of hematological malignancies. Bone Marrow Transplant. 2006;38:291–7. doi:10.1038/sj.bmt.1705445.

    Article  PubMed  Google Scholar 

  93. Liu D, Huang X, Liu K, et al. Haploidentical hematopoietic stem cell transplantation without in vitro T cell depletion for treatment of hematological malignancies in children. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2008;14:469–77. doi:10.1016/j.bbmt.2008.02.007.

    Article  CAS  Google Scholar 

  94. Huang X-J, Liu D-H, Liu K-Y, et al. Treatment of acute leukemia with unmanipulated HLA-mismatched/haploidentical blood and bone marrow transplantation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2009;15:257–65. doi:10.1016/j.bbmt.2008.11.025.

    Article  CAS  Google Scholar 

  95. Lee K-H, Lee J-H, Lee J-H, et al. Reduced-intensity conditioning therapy with busulfan, fludarabine, and antithymocyte globulin for HLA-haploidentical hematopoietic cell transplantation in acute leukemia and myelodysplastic syndrome. Blood. 2011;118:2609–17. doi:10.1182/blood-2011-02-339838.

    Article  CAS  PubMed  Google Scholar 

  96. Di Bartolomeo P, Santarone S, De Angelis G, et al. Haploidentical, unmanipulated, G-CSF-primed bone marrow transplantation for patients with high-risk hematologic malignancies. Blood. 2013;121:849–57. doi:10.1182/blood-2012-08-453399.

    Article  PubMed  CAS  Google Scholar 

  97. Wang Y, Liu Q-F, Xu L-P, et al. Haploidentical vs identical-sibling transplant for AML in remission: a multicenter, prospective study. Blood. 2015;125:3956–62. doi:10.1182/blood-2015-02-627786.

    Article  CAS  PubMed  Google Scholar 

  98. McCurdy SR, Kanakry JA, Showel MM, et al. Risk-stratified outcomes of nonmyeloablative HLA-haploidentical BMT with high-dose posttransplantation cyclophosphamide. Blood. 2015;125:3024–31. doi:10.1182/blood-2015-01-623991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Solomon SR, Solh M, Morris LE, et al. Myeloablative conditioning with PBSC grafts for T cell-replete Haploidentical donor transplantation using Posttransplant cyclophosphamide. Adv Hematol. 2016;2016:9736564. doi:10.1155/2016/9736564.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Raiola AM, Dominietto A, Ghiso A, et al. Unmanipulated haploidentical bone marrow transplantation and posttransplantation cyclophosphamide for hematologic malignancies after myeloablative conditioning. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2013;19:117–22. doi:10.1016/j.bbmt.2012.08.014.

    Article  CAS  Google Scholar 

  101. Solomon SR, Sizemore CA, Sanacore M, et al. Total body irradiation-based myeloablative haploidentical stem cell transplantation is a safe and effective alternative to unrelated donor transplantation in patients without matched sibling donors. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2015;21:1299–307. doi:10.1016/j.bbmt.2015.03.003.

    Article  Google Scholar 

  102. Castagna L, Crocchiolo R, Furst S, et al. Bone marrow compared with peripheral blood stem cells for haploidentical transplantation with a nonmyeloablative conditioning regimen and post-transplantation cyclophosphamide. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2014;20:724–9. doi:10.1016/j.bbmt.2014.02.001.

    Article  Google Scholar 

  103. Solomon SR, Sizemore CA, Sanacore M, et al. Haploidentical transplantation using T cell replete peripheral blood stem cells and myeloablative conditioning in patients with high-risk hematologic malignancies who lack conventional donors is well tolerated and produces excellent relapse-free survival: results of a prospective phase II trial. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2012;18:1859–66. doi:10.1016/j.bbmt.2012.06.019.

    Article  Google Scholar 

  104. Ciurea SO, Mulanovich V, Saliba RM, et al. Improved early outcomes using a T cell replete graft compared with T cell depleted haploidentical hematopoietic stem cell transplantation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2012;18:1835–44. doi:10.1016/j.bbmt.2012.07.003.

    Article  Google Scholar 

  105. Grosso D, Carabasi M, Filicko-O’Hara J, et al. A 2-step approach to myeloablative haploidentical stem cell transplantation: a phase 1/2 trial performed with optimized T-cell dosing. Blood. 2011;118:4732–9. doi:10.1182/blood-2011-07-365338.

    Article  CAS  PubMed  Google Scholar 

  106. Grosso D, Gaballa S, Alpdogan O, et al. A two-step approach to myeloablative haploidentical transplantation: low nonrelapse mortality and high survival confirmed in patients with earlier stage disease. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2015;21:646–52. doi:10.1016/j.bbmt.2014.12.019.

    Article  Google Scholar 

  107. Ciurea SO, Zhang M-J, Bacigalupo AA, et al. Haploidentical transplant with posttransplant cyclophosphamide vs matched unrelated donor transplant for acute myeloid leukemia. Blood. 2015;126:1033–40. doi:10.1182/blood-2015-04-639831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Anasetti C, Logan BR, Lee SJ, et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med. 2012;367:1487–96. doi:10.1056/NEJMoa1203517.

    Article  CAS  PubMed  Google Scholar 

  109. El-Cheikh J, Crocchiolo R, Furst S, et al. Unrelated cord blood compared with haploidentical grafts in patients with hematological malignancies. Cancer. 2015;121:1809–16. doi:10.1002/cncr.29271.

    Article  PubMed  Google Scholar 

  110. Castagna L, Bramanti S, Furst S, et al. Nonmyeloablative conditioning, unmanipulated haploidentical SCT and post-infusion CY for advanced lymphomas. Bone Marrow Transplant. 2014;49:1475–80. doi:10.1038/bmt.2014.197.

    Article  CAS  PubMed  Google Scholar 

  111. Leffell MS, Jones RJ, Gladstone DE. Donor HLA-specific abs: to BMT or not to BMT? Bone Marrow Transplant. 2015;50:751–8. doi:10.1038/bmt.2014.331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kongtim P, Cao K, Ciurea SO. Donor specific anti-HLA antibody and risk of graft failure in Haploidentical stem cell transplantation. Adv Hematol. 2016;2016:4025073. doi:10.1155/2016/4025073.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Grandage VL, Cornish JM, Pamphilon DH, et al. Second allogeneic bone marrow transplants from unrelated donors for graft failure following initial unrelated donor bone marrow transplantation. Bone Marrow Transplant. 1998;21:687–90. doi:10.1038/sj.bmt.1701146.

    Article  CAS  PubMed  Google Scholar 

  114. Kernan NA, Bordignon C, Heller G, et al. Graft failure after T-cell-depleted human leukocyte antigen identical marrow transplants for leukemia: I. Analysis of risk factors and results of secondary transplants. Blood. 1989;74:2227–36.

    CAS  PubMed  Google Scholar 

  115. Wolff SN. Second hematopoietic stem cell transplantation for the treatment of graft failure, graft rejection or relapse after allogeneic transplantation. Bone Marrow Transplant. 2002;29:545–52. doi:10.1038/sj.bmt.1703389.

    Article  CAS  PubMed  Google Scholar 

  116. Teltschik H-M, Heinzelmann F, Gruhn B, et al. Treatment of graft failure with TNI-based reconditioning and haploidentical stem cells in paediatric patients. Br J Haematol. 2016;175:115–22. doi:10.1111/bjh.14190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Schriber J, Agovi M-A, Ho V, et al. Second unrelated donor hematopoietic cell transplantation for primary graft failure. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2010;16:1099–106. doi:10.1016/j.bbmt.2010.02.013.

    Article  Google Scholar 

  118. de Rojas T, Fioravantti V, Deltoro N, et al. Autologous cord blood cells infusion as salvage therapy for engraftment failure after haploidentical hematopoietic stem cell transplantation in acute myeloid leukemia. Pediatr Blood Cancer. 2016;63:1495–6. doi:10.1002/pbc.25974.

    Article  PubMed  Google Scholar 

  119. Waki F, Masuoka K, Fukuda T, et al. Feasibility of reduced-intensity cord blood transplantation as salvage therapy for graft failure: results of a nationwide survey of adult patients. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2011;17:841–51. doi:10.1016/j.bbmt.2010.09.005.

    Article  Google Scholar 

  120. Bojic M, Worel N, Sperr WR, et al. Umbilical cord blood transplantation is a feasible rescue therapeutic option for patients suffering from graft failure after previous hematopoietic stem cell transplantation. Oncology. 2016;90:160–6. doi:10.1159/000443767.

    Article  CAS  PubMed  Google Scholar 

  121. Eapen M, Giralt SA, Horowitz MM, et al. Second transplant for acute and chronic leukemia relapsing after first HLA-identical sibling transplant. Bone Marrow Transplant. 2004;34:721–7. doi:10.1038/sj.bmt.1704645.

    Article  CAS  PubMed  Google Scholar 

  122. Christopeit M, Kuss O, Finke J, et al. Second allograft for hematologic relapse of acute leukemia after first allogeneic stem-cell transplantation from related and unrelated donors: the role of donor change. J Clin Oncol. 2013;31:3259–71. doi:10.1200/JCO.2012.44.7961.

    Article  PubMed  Google Scholar 

  123. Epperla N, Pasquini M, Pierce K, et al. Salvage haploidentical hematopoietic cell transplantation for graft rejection following a prior haploidentical allograft. Bone Marrow Transplant. 2017;52:147–50. doi:10.1038/bmt.2016.200.

    Article  CAS  PubMed  Google Scholar 

  124. Guardiola P, Kuentz M, Garban F, et al. Second early allogeneic stem cell transplantations for graft failure in acute leukaemia, chronic myeloid leukaemia and aplastic anaemia. French Society of Bone Marrow Transplantation. Br J Haematol. 2000;111:292–302.

    Article  CAS  PubMed  Google Scholar 

  125. Heinzelmann F, Lang PJ, Ottinger H, et al. Immunosuppressive total lymphoid irradiation-based reconditioning regimens enable engraftment after graft rejection or graft failure in patients treated with allogeneic hematopoietic stem cell transplantation. Int J Radiat Oncol Biol Phys. 2008;70:523–8. doi:10.1016/j.ijrobp.2007.06.037.

    Article  PubMed  Google Scholar 

  126. Park JA, Koh KN, Choi ES, et al. Successful rescue of early graft failure in pediatric patients using T-cell-depleted haploidentical hematopoietic SCT. Bone Marrow Transplant. 2014;49:270–5. doi:10.1038/bmt.2013.163.

    Article  CAS  PubMed  Google Scholar 

  127. Kanda J, Horwitz ME, Long GD, et al. Outcomes of a 1-day nonmyeloablative salvage regimen for patients with primary graft failure after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2012;47:700–5. doi:10.1038/bmt.2011.158.

    Article  CAS  PubMed  Google Scholar 

  128. Zeidan AM, Forde PM, Symons H, et al. HLA-haploidentical donor lymphocyte infusions for patients with relapsed hematologic malignancies after related HLA-haploidentical bone marrow transplantation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2014;20:314–8. doi:10.1016/j.bbmt.2013.11.020.

    Article  CAS  Google Scholar 

  129. Yan C-H, Xu L-P, Liu D, et al. Low-dose methotrexate may preserve a stronger antileukemic effect than that of cyclosporine after modified donor lymphocyte infusion in unmanipulated haploidentical HSCT. Clin Transpl. 2015;29:594–605. doi:10.1111/ctr.12561.

    Article  CAS  Google Scholar 

  130. Bittencourt H, Rocha V, Filion A, et al. Granulocyte colony-stimulating factor for poor graft function after allogeneic stem cell transplantation: 3 days of G-CSF identifies long-term responders. Bone Marrow Transplant. 2005;36:431–5. doi:10.1038/sj.bmt.1705072.

    Article  CAS  PubMed  Google Scholar 

  131. Battipaglia G, Ruggeri A, Brissot E, et al. Safety and feasibility of romiplostim treatment for patients with persistent thrombocytopenia after allogeneic stem cell transplantation. Bone Marrow Transplant. 2015;50:1574–7. doi:10.1038/bmt.2015.182.

    Article  CAS  PubMed  Google Scholar 

  132. Larocca A, Piaggio G, Podestà M, et al. Boost of CD34+-selected peripheral blood cells without further conditioning in patients with poor graft function following allogeneic stem cell transplantation. Haematologica. 2006;91:935–40.

    PubMed  Google Scholar 

  133. Haen SP, Schumm M, Faul C, et al. Poor graft function can be durably and safely improved by CD34+-selected stem cell boosts after allogeneic unrelated matched or mismatched hematopoietic cell transplantation. J Cancer Res Clin Oncol. 2015;141:2241–51. doi:10.1007/s00432-015-2027-x.

    Article  PubMed  Google Scholar 

  134. Bernardo ME, Locatelli F. Mesenchymal stromal cells in hematopoietic stem cell transplantation. Methods Mol Biol Clifton NJ. 2016;1416:3–20. doi:10.1007/978-1-4939-3584-0_1.

    Article  CAS  Google Scholar 

  135. Ringdén O. Mesenchymal stromal cells as first-line treatment of graft failure after hematopoietic stem cell transplantation. Stem Cells Dev. 2009;18:1243–6. doi:10.1089/scd.2009.1809.edi.

    Article  PubMed  Google Scholar 

  136. Meuleman N, Tondreau T, Ahmad I, et al. Infusion of mesenchymal stromal cells can aid hematopoietic recovery following allogeneic hematopoietic stem cell myeloablative transplant: a pilot study. Stem Cells Dev. 2009;18:1247–52. doi:10.1089/scd.2009.0029.

    Article  PubMed  Google Scholar 

  137. Sánchez-Guijo FM, López-Villar O, López-Anglada L, et al. Allogeneic mesenchymal stem cell therapy for refractory cytopenias after hematopoietic stem cell transplantation. Transfusion (Paris). 2012;52:1086–91. doi:10.1111/j.1537-2995.2011.03400.x.

    Article  Google Scholar 

  138. Xiong Y-Y, Fan Q, Huang F, et al. Mesenchymal stem cells versus mesenchymal stem cells combined with cord blood for engraftment failure after autologous hematopoietic stem cell transplantation: a pilot prospective, open-label, randomized trial. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2014;20:236–42. doi:10.1016/j.bbmt.2013.11.002.

    Article  Google Scholar 

  139. Liu X, Wu M, Peng Y, et al. Improvement in poor graft function after allogeneic hematopoietic stem cell transplantation upon administration of mesenchymal stem cells from third-party donors: a pilot prospective study. Cell Transplant. 2014;23:1087–98. doi:10.3727/096368912X661319.

    Article  PubMed  Google Scholar 

  140. Lang P, Greil J, Bader P, et al. Long-term outcome after haploidentical stem cell transplantation in children. Blood Cells Mol Dis. 2004;33:281–7. doi:10.1016/j.bcmd.2004.08.017.

    Article  PubMed  Google Scholar 

  141. Kaynar L, Demir K, Turak EE, et al. TcRαβ-depleted haploidentical transplantation results in adult acute leukemia patients. Hematol Amst Neth. 2016;22:1–9. doi:10.1080/10245332.2016.1238182.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Moraleda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Blanquer, M., Moraleda, J.M. (2017). Graft Failure and Rejection in Haploidentical Stem Cell Transplantation. In: Demirer, T. (eds) Haploidentical Stem Cell Transplantation. Stem Cell Biology and Regenerative Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-65319-8_3

Download citation

Publish with us

Policies and ethics