Skip to main content

Design of a Robotic Laparoscopic Tool with Modular Actuation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10463))

Abstract

This paper presents the development of a modular robotic laparoscopic tool for MIS (Minimally Invasive Surgery). A dual continuum mechanism is utilized in the tool design to ensure reliability as well as achieve enhanced distal dexterity, increased payload capability and actuation modularity under a simple construction. Via kinematics modeling, the laparoscopic tool could be maneuvered by a Denso manipulator to perform typical laparoscopic tasks and possesses the desired functionalities for MIS. Advantages of the implemented dual continuum mechanism lead to the performances of this attempt. Motivated by the commercial success of the da Vinci surgical system, this paper presents an alternative design to realize robotic laparoscopic surgeries, which could lead to possible future commercialization opportunities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cuschieri, A.: Laparoscopic surgery: current status, issues future developments. Surgeon 3(3), 125–138 (2005)

    Article  Google Scholar 

  2. Taylor, R.H.: A perspective on medical robotics. Proc. IEEE 94(9), 1652–1664 (2006)

    Article  Google Scholar 

  3. Guthart, G.S., Salisbury, J.K.: The IntuitiveTM telesurgery system: overview and application. In: IEEE International Conference on Robotics and Automation (ICRA). San Francisco, CA (2000)

    Google Scholar 

  4. Guthart, G.: Annual report 2010, p. 108. Intuitive Surgical, Inc., Sunnyvale (2011)

    Google Scholar 

  5. Kanno, T., et al.: A forceps manipulator with flexible 4-DoF mechanism for laparoscopic surgery. IEEE-ASME Trans. Mechatron. 20(3), 1170–1178 (2015)

    Article  Google Scholar 

  6. Hong, M.B., Jo, Y.H.: Design of a novel 4-DoF wrist-type surgical instrument with enhanced rigidity and dexterity. IEEE-ASME Trans. Mechatron. 19(2), 500–511 (2014)

    Article  Google Scholar 

  7. Xu, K., Simaan, N.: An investigation of the intrinsic force sensing capabilities of continuum robots. IEEE Trans. Robot. 24(3), 576–587 (2008)

    Article  Google Scholar 

  8. Xu, K., Simaan, N.: Intrinsic wrench estimation and its performance index for multisegment continuum robots. IEEE Trans. Robot. 26(3), 555–561 (2010)

    Article  Google Scholar 

  9. He, C., et al.: Force sensing of multiple-DOF cable-driven instruments for minimally invasive robotic surgery. Int. J. Med. Robot. Comput. Assist. Surg. 10(3), 314–324 (2014)

    Article  Google Scholar 

  10. Leonard, S., et al.: Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing. IEEE Trans. Biomed. Eng. 61(4), 1305–1317 (2014)

    Article  Google Scholar 

  11. Ma, R., et al.: Design and optimization of manipulator for laparoscopic minimally invasive surgical robotic system. In: 2012 International Conference on Mechatronics and Automation (ICMA). IEEE (2012)

    Google Scholar 

  12. Taylor, R.H., Stoianovici, D.: Medical robotics in computer-integrated surgery. IEEE Trans. Robot. Autom. 19(5), 765–781 (2003)

    Article  Google Scholar 

  13. Hadavand, M., et al.: A novel remote center of motion mechanism for the force-reflective master robot of haptic tele-surgery systems. Int. J. Med. Robot. Comput. Assist. Surg. 10(2), 129–139 (2014)

    Article  Google Scholar 

  14. Kuo, C.H., Dai, J.S.: Kinematics of a fully-decoupled remote center-of-motion parallel manipulator for minimally invasive surgery. J. Med. Devices-Trans. ASME 6(2), 021008 (2012)

    Article  Google Scholar 

  15. Nasseri, M.A., et al.: Virtual fixture control of a hybrid parallel-serial robot for assisting ophthalmic surgery: an experimental study. In: 2014 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 732–738 (2014)

    Google Scholar 

  16. Lopez, E., et al.: Implicit active constraints for robot-assisted arthroscopy. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 5390–5395 (2013)

    Google Scholar 

  17. Dubrowski, A., et al.: Quantification of motion characteristics and forces applied to tissues during suturing. Am. J. Surg. 190(1), 131–136 (2005)

    Article  Google Scholar 

  18. Okamura, A.M.: Methods for haptic feedback in teleoperated robot-assisted surgery. Ind. Robot Int. J. 31(6), 499–508 (2004)

    Article  Google Scholar 

  19. Berg, D.R., et al.: Determination of surgical robot tool force requirements through tissue manipulation and suture force measurement. Trans. ASME-W-J. Med. Devices 5(2), 027517 (2011)

    Article  Google Scholar 

  20. Xu, K., Zhao, J., Fu, M.: Development of the SJTU unfoldable robotic system (SURS) for single port laparoscopy. IEEE/ASME Trans. Mechatron. 20(5), 2133–2145 (2014)

    Article  Google Scholar 

  21. Xu, K., Fu, M., Zhao, J.: An experimental kinestatic comparison between continuum manipulators with structural variations. In: IEEE International Conference on Robotics and Automation. HongKong (2014)

    Google Scholar 

  22. Zhao, J., et al.: An endoscopic continuum testbed for finalizing system characteristics of a surgical robot for NOTES procedures. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Wollongong, Australia, pp. 63–70 (2013)

    Google Scholar 

  23. Webster, R.J., Jones, B.A.: Design and kinematic modeling of constant curvature continuum robots: a review. Int. J. Robot. Res. 29(13), 1661–1683 (2010)

    Article  Google Scholar 

  24. Xu, K., Simaan, N.: Analytic formulation for the kinematics, statics and shape restoration of multibackbone continuum robots via elliptic integrals. J. Mech. Robot. 2(1), 011006 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (Grant No. 51435010 and Grant No. 51375295), and in part by the Shanghai Jiao Tong University Interdisciplinary Research Funds (Grant No. YG2013MS26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Xu, K., Zhang, H., Zhao, J., Dai, Z. (2017). Design of a Robotic Laparoscopic Tool with Modular Actuation. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10463. Springer, Cham. https://doi.org/10.1007/978-3-319-65292-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65292-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65291-7

  • Online ISBN: 978-3-319-65292-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics