Skip to main content

Off-Line Programmed Error Compensation of an Industrial Robot in Ship Hull Welding

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10463))

Included in the following conference series:

Abstract

This paper presents the compliance modeling and error compensation for an industrial robot in the application of ship hull welding. The Cartesian stiffness matrix is derived using the virtual-spring approach, which takes the actuation and structural stiffness, arm gravity and external loads into account. Based on the developed stiffness model, a method to compensate the compliance error is introduced, being illustrated with an industrial robot along a welding trajectory. The results show that this compensation method can effectively improve the robot’s operational accuracy, allowing the actual trajectory of the robot with auxiliary loads to coincide with the target one approximately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ABB IRB 4600 Product specification. http://new.abb.com/products/robotics/en/industrial-robots/irb-4600

  2. Alici, G., Shirinzadeh, B.: Enhanced stiffness modeling, identification and characterization for robot manipulators. IEEE Trans. Robot. 21(4), 554–564 (2005)

    Article  MATH  Google Scholar 

  3. Bolmsjö, G., Olsson, M., Cederberg, P.: Robotic arc welding-trends and developments for higher autonomy. Ind. Robot 29(2), 98–104 (2002)

    Article  Google Scholar 

  4. Chen, S.F., Kao, I.: Conservative congruence transformation for joint and cartesian stiffness matrices of robotic hands and fingers. Int. J. Robot. Res. 19, 835–847 (2000)

    Article  Google Scholar 

  5. Denavit, J., Hartenberg, R.: A kinematic notation for lower-pair mechanisms based on matrices. ASME J. Appl. Mech. 22, 215–221 (1955)

    MATH  MathSciNet  Google Scholar 

  6. Dépincé, P., Hasco, J.Y.: Active integration of tool deflection effects in end milling. Part 2. Compensation of tool deflection. Int. J. Mach. Tools Manuf. 46(9), 945–956 (2006)

    Article  Google Scholar 

  7. Eastwood, S.J., Webb, P.: A gravitational deflection compensation strategy for HPKMs. Robot. Comput.–Integr. Manuf. 26(6), 694–702 (2010)

    Article  Google Scholar 

  8. Huang, T., Zhao, X., Whitehouse, D.J.: Stiffness estimation of a tripod-based parallel kinematic machine. IEEE Trans. Robot. Autom. 18(1), 50–58 (2002)

    Article  Google Scholar 

  9. Jalon, J.G.D., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge. Springer, New York (2011)

    Google Scholar 

  10. Klimchik, A., Pashkevich, A., Chablat, D., Hovland, G.: Compliance error compensation technique for parallel robots composed of non-perfect serial chains. Robot. Comput.–Integr. Manuf. 29(2), 385–393 (2013)

    Article  Google Scholar 

  11. Kövecses, J., Angeles, J.: The stiffness matrix in elastically articulated rigid-body systems. Multibody Syst. Dyn. 18(2), 169–184 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Meggiolaro, M.A., Dubowsky, S., Mavroidis, C.: Geometric and elastic error calibration of a high accuracy patient positioning system. Mech. Mach. Theory 40(4), 415–427 (2005)

    Article  MATH  Google Scholar 

  13. Pashkevich, A., Klimchik, A., Chablat, D.: Enhanced stiffness modeling of manipulators with passive joints. Mech. Mach. Theory 46(5), 662–679 (2011)

    Article  MATH  Google Scholar 

  14. Quennouelle, C., Gosselin, C.M.: Stiffness matrix of compliant parallel mechanisms. In: Lenarčič, J., Wenger, P. (eds.) Advances in Robot Kinematics: Analysis and Design, pp. 331–341. Springer, Netherlands (2008). doi:10.1007/978-1-4020-8600-7_35

    Chapter  Google Scholar 

  15. Salisbury, J.: Active stiffness control of a manipulator in cartesian coordinates. In: 19th IEEE Conference on Decision and Control Symposium on Adaptive Processess, vol. 19, pp. 95–100 (1980)

    Google Scholar 

  16. Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32552-1

    Book  MATH  Google Scholar 

  17. Tsai, L.: Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley, Hoboken (1999)

    Google Scholar 

  18. Wittbrodt, E., Adamiec-Wójcik, I., Wojciech, S.: Dynamics of Flexible Multibody Systems. Springer, Heidelberg (2006). doi:10.1007/978-3-540-32352-5

    MATH  Google Scholar 

  19. Wu, G., Bai, S., Kepler, J.: Mobile platform center shift in spherical parallel manipulators with flexible limbs. Mech. Mach. Theory 75, 12–26 (2014)

    Article  Google Scholar 

  20. Wu, G., Guo, S., Bai, S.: Compliance modeling and error compensation of a 3-parallelogram lightweight robotic arm. In: Bai, S., Ceccarelli, M. (eds.) Recent Advances in Mechanism Design for Robotics. MMS, vol. 33, pp. 325–336. Springer, Cham (2015). doi:10.1007/978-3-319-18126-4_31

    Google Scholar 

  21. Zhuang, H.: Self-calibration of parallel mechanisms with a case study on Stewart platforms. IEEE Trans. Robot. Autom. 13(3), 387–397 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The reported work is partly supported by the National Science and Technology Major Project (No. 2013ZX04003041-6), the Fundamental Research Funds for the Central Universities (No. DUT16RC(3)068), and the Liaoning Province STI major projects (No. 2015106007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanglei Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wu, G., Wang, D., Dong, H. (2017). Off-Line Programmed Error Compensation of an Industrial Robot in Ship Hull Welding. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10463. Springer, Cham. https://doi.org/10.1007/978-3-319-65292-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65292-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65291-7

  • Online ISBN: 978-3-319-65292-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics