Skip to main content

Osteocardiology: Calcific Aortic Disease

  • Chapter
  • First Online:
Osteocardiology
  • 269 Accesses

Abstract

Calcification of the aorta is a complex and long term disease process manifesting in ulcers, aneurysms, and abnormal thrombus formation. Similar to coronary atherosclerosis and valvular atherosclerosis, traditional cardiovascular risk factors are responsible for the development of aortic calcification. Large cohort databases, such as MESA and familial hypercholesterolemia cohorts are instrumental in defining the risk factors, progression and calcification phenotype in this large vessel. To date, no medical therapy has been defined to treat or slow progression, in part due to the complexity and length of time to develop this disease process. This chapter may help to understand the complexity and to help provide the foundation for future studies to determine if and when medical therapy may be instituted to slow progression of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takasu J, Katz R, Nasir K, et al. Relationships of thoracic aortic wall calcification to cardiovascular risk factors: the multi-ethnic study of atherosclerosis (MESA). Am Heart J. 2008;155:765–71.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Budoff MJ, Nasir K, Katz R, et al. Thoracic aortic calcification and coronary heart disease events: the multi-ethnic study of atherosclerosis (MESA). Atherosclerosis. 2011;215:196–202.

    Article  CAS  PubMed  Google Scholar 

  3. Hyder JA, Allison MA, Wong N, et al. Association of coronary artery and aortic calcium with lumbar bone density: the MESA Abdominal Aortic Calcium Study. Am J Epidemiol. 2009;169:186–94.

    Article  PubMed  Google Scholar 

  4. Demer LL, Tintut Y. Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol. 2014;34:715–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alrasadi K, Alwaili K, Awan Z, Valenti D, Couture P, Genest J. Aortic calcifications in familial hypercholesterolemia: potential role of the low-density lipoprotein receptor gene. Am Heart J. 2009;157:170–6.

    Article  CAS  PubMed  Google Scholar 

  6. Kindi MA, Belanger AM, Sayegh K, et al. Aortic calcification progression in heterozygote familial hypercholesterolemia. Can J Cardiol. 2017;33:658–65.

    Article  PubMed  Google Scholar 

  7. Rajamannan NM, Subramaniam M, Rickard D, et al. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation. 2003;107:2181–4.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boyden LM, Mao J, Belsky J, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346:1513–21.

    Article  CAS  PubMed  Google Scholar 

  9. Gong Y, Slee RB, Fukai N, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107:513–23.

    Article  CAS  PubMed  Google Scholar 

  10. Fujino T, Asaba H, Kang MJ, et al. Low-density lipoprotein receptor-related protein 5 (LRP5) is essential for normal cholesterol metabolism and glucose-induced insulin secretion. Proc Natl Acad Sci U S A. 2003;100:229–34.

    Article  CAS  PubMed  Google Scholar 

  11. Babij P, Zhao W, Small C, et al. High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res. 2003;18:960–74.

    Article  CAS  PubMed  Google Scholar 

  12. Westendorf JJ, Kahler RA, Schroeder TM. Wnt signaling in osteoblasts and bone diseases. Gene. 2004;341:19–39.

    Article  CAS  PubMed  Google Scholar 

  13. Holmen SL, Giambernardi TA, Zylstra CR, et al. Decreased BMD and limb deformities in mice carrying mutations in both Lrp5 and Lrp6. J Bone Miner Res. 2004;19:2033–40.

    Article  CAS  PubMed  Google Scholar 

  14. Awan Z, Denis M, Bailey D, et al. The LDLR deficient mouse as a model for aortic calcification and quantification by micro-computed tomography. Atherosclerosis. 2011;219:455–62.

    Article  CAS  PubMed  Google Scholar 

  15. Rajamannan NM. The role of Lrp5/6 in cardiac valve disease: experimental hypercholesterolemia in the ApoE−/− /Lrp5−/− mice. J Cell Biochem. 2011;112:2987–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rajamannan NM. Atorvastatin attenuates bone loss and aortic valve atheroma in LDLR mice. Cardiology. 2015;132:11–5.

    Article  CAS  PubMed  Google Scholar 

  17. Rajamannan NM. Calcific aortic valve disease in familial hypercholesterolemia: the LDL-density-gene effect. J Am Coll Cardiol. 2015;66:2696–8.

    Article  PubMed  Google Scholar 

  18. ten Kate GJ, Bos S, Dedic A, et al. Increased aortic valve calcification in familial hypercholesterolemia: prevalence, extent, and associated risk factors. J Am Coll Cardiol. 2015;66:2687–95.

    Article  PubMed  Google Scholar 

  19. Rajamannan NM. Oxidative-mechanical stress signals stem cell niche mediated Lrp5 osteogenesis in eNOS(−/−) null mice. J Cell Biochem. 2012;113:1623–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chan KL, Teo K, Dumesnil JG, Ni A, Tam J, Investigators A. Effect of Lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation. 2010;121:306–14.

    Article  CAS  PubMed  Google Scholar 

  21. Cowell SJ, Newby DE, Prescott RJ, et al. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med. 2005;352:2389–97.

    Article  CAS  PubMed  Google Scholar 

  22. Grenon SM, Lachapelle K, Marcil M, Omeroglu A, Genest J, de Varennes B. Surgical strategies for severe calcification of the aorta (porcelain aorta) in two patients with homozygous familial hypercholesterolemia. Can J Cardiol. 2007;23:1159–61.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Primary P, Genest J, Hegele RA, et al. Canadian Cardiovascular Society position statement on familial hypercholesterolemia. Can J Cardiol. 2014;30:1471–81.

    Article  Google Scholar 

  24. Rajamannan NM, Nattel S. Aortic vascular calcification: cholesterol lowering does not reduce progression in patients with familial hypercholesterolemia- or does it? Can J Cardiol. 2017;33:594–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Rajamannan, N.M. (2018). Osteocardiology: Calcific Aortic Disease. In: Osteocardiology. Springer, Cham. https://doi.org/10.1007/978-3-319-64994-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64994-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64993-1

  • Online ISBN: 978-3-319-64994-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics