Skip to main content

Laser Phase Spectroscopy in Closed-Loop Multilevel Schemes

  • Chapter
  • First Online:
Exploring the World with the Laser

Abstract

Atomic/molecular systems with closed-loop configurations have singular features associated with the creation of multiple interconnected coherences. The resonant condition is determined by the full-loop detuning and the full-loop phase of the laser excitation. The main theoretical features and experimental tests published so far are reviewed. Perspectives of laser spectroscopy based on closed loops are discussed.

This article is part of the topical collection “Enlightening the World with the Laser” - Honoring T. W. Hänsch guest edited by Tilman Esslinger, Nathalie Picqué, and Thomas Udem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. T.W. Hänsch, I.S. Shahin, A.L. Schawlow, Phys. Rev. Lett. 27, 707 (1971)

    Article  ADS  Google Scholar 

  2. W. Demtröder, Laser Spectroscopy, vol. I, II (Springer, Berlin, 2008)

    Google Scholar 

  3. J.L. Hall, Rev. Mod. Phys. 78, 1279 (2006)

    Article  ADS  Google Scholar 

  4. T.W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006)

    Article  ADS  Google Scholar 

  5. W.E. Bell, A.L. Bloom, Phys. Rev. Lett. 6, 280 (1961)

    Article  ADS  Google Scholar 

  6. E.B. Aleksandrov, Opt. Spectrosc. 14, 233 (1963)

    ADS  Google Scholar 

  7. A. Corney, G.W. Series, Proc. Phys. Soc. 83, 207–213 (1964)

    Article  ADS  Google Scholar 

  8. G. Alzetta, A. Gozzini, L. Moi, G. Orriols, Nuovo Cim. B 36, 5 (1976)

    Article  ADS  Google Scholar 

  9. H.R. Gray, R.M. Whitley, C.R. Stroud Jr., Opt. Lett. 3, 218 (1978)

    Article  ADS  Google Scholar 

  10. T.W. Hänsch, P. Toschek, Z. Phys. 236, 213 (1970)

    Article  ADS  Google Scholar 

  11. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  12. M. Artoni, A. Zavatta, Phys. Rev. Lett. 115, 113005 (2015)

    Article  ADS  Google Scholar 

  13. Y.R. Shen, Ann. Rev. Phys. Chem. 64, 129 (2013)

    Article  ADS  Google Scholar 

  14. M. Kotur, D. Guénot, A. Jiménez-Galán, D. Kroon, E.W. Larsen, M. Louisy, S. Bengtsson, M. Miranda, J. Mauritsson, C.L. Arnold, S.E. Canton, M. Gisselbrecht, T. Carette, J.M. Dahlstrlóm, E. Lindroth, A. Maquet, L. Argenti, F. Martín, A. L’Huillier, Nat. Commun. 7, 10566 (2016)

    Article  ADS  Google Scholar 

  15. U. Fano, Phys. Rev. 124, 1866 (1961)

    Article  ADS  Google Scholar 

  16. S.J. Buckle, S.M. Barnett, P.L. Knight, M.A. Lauder, D.T. Pegg, Opt. Acta 33, 1129 (1986)

    Article  ADS  Google Scholar 

  17. D.V. Kosachiov, G.G. Matisov, Y.U. Rozhdestvensky, J. Phys. At. Mol. Phys. B 25, 2473 (1992)

    Article  ADS  Google Scholar 

  18. R.G. Unanyan, L.P. Yatsenko, K. Bergmann, B.W. Shore, Opt. Commun. 139, 48 (1997)

    Article  ADS  Google Scholar 

  19. M. Sahrai, H. Tajalli, K.T. Kapale, M.S. Zubairy, Phys. Rev. A 70, 023813 (2004)

    Article  ADS  Google Scholar 

  20. R. Fleischhaker, J. Evers, Phys. Rev. A 77, 043805 (2008)

    Article  ADS  Google Scholar 

  21. J. Korociński, A. Raczyński, J. Zaremba, S. Zielińska-Kaniasty, J. Opt. Soc. Am. B 30, 1517 (2013)

    Article  ADS  Google Scholar 

  22. J. Korociński, Phys. Scr. T 160, 014022 (2014)

    Article  ADS  Google Scholar 

  23. A. Raczyński, J.J. Zaremba, S. Zielińska-Raczyńska, J. Opt. Soc. Am. B 32, 1229 (2015)

    Article  ADS  Google Scholar 

  24. M. Manjappa, S. Sainadh Undurti, A. Karigowda, A. Narayanan, B.C. Sanders, Phys. Rev. A 90, 043859 (2014)

    Article  ADS  Google Scholar 

  25. A.A. Rangelov, N.V. Vitanov, B.W. Shore, Phys. Rev. A 77, 033404 (2008)

    Article  ADS  Google Scholar 

  26. E. Cerboneschi, E. Arimondo, Phys. Rev. A 52, R1823 (1995)

    Article  ADS  Google Scholar 

  27. M.D. Lukin, P.R. Hemmer, M. Löffler, M.O. Scully, Phys. Rev. Lett. 81, 2675 (1998)

    Article  ADS  Google Scholar 

  28. A.A. Korsunsky, D.V. Kosachiov, Phys. Rev. A 60, 4996 (1999)

    Article  ADS  Google Scholar 

  29. H. Shpaisman, A.D. Wilson-Gordon, H. Friedmann, Phys. Rev. A 71, 043812 (2005)

    Article  ADS  Google Scholar 

  30. A. Raczyński, J. Zaremba, S. Zieliska-Kaniasty, Phys. Rev. A 69, 043801 (2004)

    Article  ADS  Google Scholar 

  31. G. Morigi, S. Franke-Arnold, G.-L. Oppo, Phys. Rev. A 66, 053409 (2002)

    Article  ADS  Google Scholar 

  32. M.S. Shahriar, P.R. Hemmer, Phys. Rev. Lett. 65, 1865 (1990)

    Article  ADS  Google Scholar 

  33. H. Li, V.A. Sautenkov, Y.V. Rostovtsev, G.R. Welch, P.R. Hemmer, M.O. Scully, Phys. Rev. A 80, 023820 (2009)

    Article  ADS  Google Scholar 

  34. T.M. Preethi, M. Manukumara, K. Asha, J. Vijay, D.A. Roshi, A. Narayanan, Eur. Phys. Lett. 95, 34005 (2011)

    Article  ADS  Google Scholar 

  35. M. Jain, H. Xia, G.Y. Yin, A.J. Merriam, S.E. Harris, Phys. Rev. Lett. 77, 4326 (1996)

    Article  ADS  Google Scholar 

  36. A. Kuzmich, W.P. Bouwen, A.D. Boozer, A. Boca, C.W. Chou, L.-M. Duan, H.J. Kimble, Nature 423, 731 (2003)

    Article  ADS  Google Scholar 

  37. C.H. van der Wal, M.D. Eisaman, A. André, R.L. Walsworth, D.F. Phillips, A.S. Zibrov, M.D. Lukin, Science 301, 196 (2003)

    Article  ADS  Google Scholar 

  38. V. Boyer, A.M. Marino, R.C. Pooser, P.D. Lett, Science 321, 544–547 (2008)

    Article  ADS  Google Scholar 

  39. W. Maichen, R. Gaggl, E.A. Korsunsky, L. Windholz, Europhys. Lett. 31, 189 (1995)

    Article  ADS  Google Scholar 

  40. E.A. Korsunsky, N. Leinfellner, A. Huss, S. Baluschev, L. Windholz, Phys. Rev. A 59, 2302 (1999)

    Article  ADS  Google Scholar 

  41. A.F. Huss, E.A. Korsunsky, L. Windholz, J. Mod. Opt. 49, 141 (2002)

    Article  ADS  Google Scholar 

  42. H. Kang, G. Hernandez, J. Zhang, Y. Zhu, Phys. Rev. A 73, 011802R (2006)

    Article  ADS  Google Scholar 

  43. R.T. Willis, F.E. Becerra, L.A. Orozco, S.L. Rolston, Phys. Rev. A 82, 053842 (2010)

    Article  ADS  Google Scholar 

  44. M.C. Stowe, A. Pe’er, J. Ye, Phys. Rev. Lett. 100, 203001 (2008)

    Article  ADS  Google Scholar 

  45. O.D. Mücke, T. Tritschler, M. Wegener, U. Morgner, F.X. Kärtner, Opt. Lett. 27, 2127 (2002)

    Article  ADS  Google Scholar 

  46. P.A. Roos, Q. Quraishi, S.T. Cundiff, R.D.R. Bhat, J.E. Sipe, Opt. Express 11, 2081 (2003)

    Article  ADS  Google Scholar 

  47. A. Apolonski, P. Dombi, G.G. Paulus, M. Kakehata, R. Holzwarth, Ch. Th Udem, K.Torizuka Lemell, J. Burgdörfer, T.W. Hänsch, F. Krausz, Phys. Rev. Lett. 92, 073902 (2004)

    Article  ADS  Google Scholar 

  48. C. Lemell, X.-M. Tong, F. Krausz, J. Burgdörfer, Phys. Rev. Lett. 90, 076403 (2003)

    Article  ADS  Google Scholar 

  49. V. Wong, R.S. Bennink, A.M. Marino, R.W. Boyd, C.R. Stroud Jr., F.A. Narducci, Phys. Rev. A 70, 053811 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is in honour of Ted Hänsch, a friend and a pioneer in the revolution of the atomic spectroscopy. We met for the first time at the Carberry Tower (Scotland) in July 1969 for the Summer School on Quantum Optics organized by the Scottish Universities, both of us looking for post-docs opportunity, finally Ted in USA and myself in England. Ten years later at Stanford, I was fascinated by Ted playing with a toy train along the hall of the Varian Physics building and setting up for a simple wavemeter. An Alexander von Humboldt Award generated my long visit to Munich in 2002 with a special admittance to Ted personal laboratory in Schelling Stra\( \beta \)e.The author acknowledges the collaboration with Hema Ramachandran that stimulated the interest into closed-loop systems, and Thomas Udem for discussion on the phase determination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ennio Arimondo .

Editor information

Editors and Affiliations

Appendix: Triangle Density Matrix Equations and Solution

Appendix: Triangle Density Matrix Equations and Solution

We write the \( \rho \) density matrix equations including the decay rates depending on the level configuration. For the case of triangle-\( \varLambda \) configuration the only nonzero decay elements are \( {\gamma}_{\mathrm{g}} \) the ground state rate equilibrating the \( \mid a\Big\rangle \) and \( \mid c\Big\rangle \) populations, and \( {\gamma}_b \) the \( \mid b\Big\rangle \) state decay rate into \( \mid a\Big\rangle \) and \( \mid c\Big\rangle \) ground states, for simplicity with equal branching ratios. Applying the rotating-wave approximation, the Hamiltonian of Eq. 1 leads to the following equations for populations and coherences:

$$ {\displaystyle \begin{array}{cc}\hfill {\dot{\rho}}_{aa}=& {\gamma}_{\mathrm{g}}\left({\rho}_{cc}-{\rho}_{aa}\right)+\frac{\gamma_b}{2}{\rho}_{bb}\hfill \\ {}\hfill & -\left[i\frac{\varOmega_3}{2}{\mathrm{e}}^{-i{\omega}_3t}{\rho}_{ab}+i\frac{\varOmega_1}{2}{\mathrm{e}}^{-i\left({\omega}_1t-\varPhi \right)}{\rho}_{ac}+\mathrm{H}.\mathrm{c}.\right],\hfill \\ {}\hfill {\dot{\rho}}_{bb}=& -{\gamma}_b{\rho}_{bb}+\left[i\frac{\varOmega_3}{2}{\mathrm{e}}^{-i{\omega}_3t}{\rho}_{ab}-i\frac{\varOmega_2}{2}{\mathrm{e}}^{-i{\omega}_2t}{\rho}_{bc}+\mathrm{H}.\mathrm{c}.\right],\hfill \\ {}\hfill {\dot{\rho}}_{cc}=& {\gamma}_{\mathrm{g}}\left({\rho}_{aa}-{\rho}_{cc}\right)+\frac{\gamma_b}{2}{\rho}_{bb}\hfill \\ {}\hfill & +\left[i\frac{\varOmega_2}{2}{\mathrm{e}}^{-i{\omega}_2t}{\rho}_{bc}+i\frac{\varOmega_1}{2}{\mathrm{e}}^{-i\left({\omega}_1t-\varPhi \right)}{\rho}_{ac}+\mathrm{H}.\mathrm{c}.\right],\hfill \\ {}\hfill {\dot{\rho}}_{ab}=& -\left(\frac{\gamma_b+{\gamma}_{\mathrm{g}}}{2}-i{\omega}_b\right){\rho}_{ab}+i\frac{\varOmega_1}{2}{\mathrm{e}}^{i{\omega}_1t}\left({\rho}_{bb}-{\rho}_{aa}\right)\hfill \\ {}\hfill & +i\frac{\varOmega_3}{2}{\mathrm{e}}^{i\left({\omega}_3t-{\varPhi}_T\right)}{\rho}_{cb}-i\frac{\varOmega_2}{2}{\mathrm{e}}^{-i{\omega}_2t}{\rho}_{ac},\hfill \\ {}\hfill \dot{\rho_{bc}}=& -\left[\frac{\gamma_b+{\gamma}_{\mathrm{g}}}{2}-i\left({\omega}_c-{\omega}_b\right)\right]{\rho}_{bc}+i\frac{\varOmega_2}{2}{\mathrm{e}}^{i{\omega}_2t}\left({\rho}_{cc}-{\rho}_{bb}\right)\hfill \\ {}\hfill & +i\frac{\varOmega_3}{2}{\mathrm{e}}^{-i\left({\omega}_3t-{\varPhi}_T\right)}{\rho}_{ac}-i\frac{\varOmega_1}{2}{\mathrm{e}}^{-i{\omega}_1t}{\rho}_{ba},\hfill \\ {}\hfill {\dot{\rho}}_{ac}=& -\left({\gamma}_{\mathrm{g}}-i{\omega}_c\right){\rho}_{ca}+i\frac{\varOmega_3}{2}{\mathrm{e}}^{i\left({\omega}_3t-{\varPhi}_T\right)}\left({\rho}_{cc}-{\rho}_{aa}\right)\hfill \\ {}\hfill & +i\frac{\varOmega_1}{2}{\mathrm{e}}^{i{\omega}_1t}{\rho}_{bc}-i\frac{\varOmega_3}{2}{\mathrm{e}}^{i\left({\omega}_3t-{\varPhi}_T\right)}{\rho}_{ab}.\hfill \end{array}} $$
(10)

Introducing the standard transformation to a rotating frame [16]

$$ {\displaystyle \begin{array}{cc}\hfill {\rho}_{ba}& ={\sigma}_{ba}{\mathrm{e}}^{-i{\omega}_1t},{\rho}_{cb}={\sigma}_{cb}{\mathrm{e}}^{-i{\omega}_2t},\hfill \\ {}\hfill {\rho}_{ca}& ={\sigma}_{ca}{\mathrm{e}}^{-i\left({\omega}_3t-{\varPhi}_T\right)},{\rho}_{ii}={\sigma}_{ii},\hfill \end{array}} $$
(11)

with \( \left(i=a,b,c\right) \), we obtain a new set of equations

$$ {\displaystyle \begin{array}{cc}\hfill {\dot{\sigma}}_{aa}=& {\gamma}_{\mathrm{g}}\left({\sigma}_{cc}-{\sigma}_{aa}\right)+\frac{\gamma_b}{2}{\sigma}_{bb}-i\frac{\varOmega_1}{2}\left({\sigma}_{ab}-{\sigma}_{ba}\right)-i\frac{\varOmega_3}{2}\left({\sigma}_{ac}-{\sigma}_{ca}\right),\hfill \\ {}\hfill {\dot{\sigma}}_{bb}=& -{\gamma}_b{\sigma}_{bb}+i\frac{\varOmega_1}{2}\left({\sigma}_{ab}-{\sigma}_{ba}\right)-i\frac{\varOmega_2}{2}\left({\sigma}_{bc}-{\sigma}_{cb}\right),\hfill \\ {}\hfill {\dot{\sigma}}_{cc}=& {\gamma}_{\mathrm{g}}\left({\sigma}_{aa}-{\sigma}_{cc}\right)+\frac{\gamma_b}{2}{\sigma}_{bb}+i\frac{\varOmega_2}{2}\left({\sigma}_{bc}-{\sigma}_{cb}\right)+i\frac{\varOmega_3}{2}\left({\sigma}_{ac}-{\sigma}_{ca}\right),\hfill \\ {}\hfill {\dot{\sigma}}_{ab}=& -\left(\frac{\gamma_b+{\gamma}_{\mathrm{g}}}{2}+i{\delta}_1\right){\sigma}_{ab}+i\frac{\varOmega_1}{2}\left({\sigma}_{bb}-{\sigma}_{aa}\right)\hfill \\ {}\hfill & +i\frac{\varOmega_3}{2}{\mathrm{e}}^{i{\Delta}_Tt}{\mathrm{e}}^{-i{\varPhi}_T}{\sigma}_{cb}-i\frac{\varOmega_2}{2}{\mathrm{e}}^{i{\Delta}_Tt}{\mathrm{e}}^{-i{\varPhi}_T}{\sigma}_{ac},\hfill \\ {}\hfill {\dot{\sigma}}_{bc}=& -\left(\frac{\gamma_b+{\gamma}_{\mathrm{g}}}{2}+i{\delta}_2\right){\sigma}_{bc}+i\frac{\varOmega_2}{2}\left({\sigma}_{cc}-{\sigma}_{bb}\right)\hfill \\ {}\hfill & +i\frac{\varOmega_1}{2}{\mathrm{e}}^{i{\Delta}_Tt}{\mathrm{e}}^{-i{\varPhi}_T}{\sigma}_{ac}-i\frac{\varOmega_3}{2}{\mathrm{e}}^{i{\Delta}_Tt}{\mathrm{e}}^{-i{\varPhi}_T}{\sigma}_{ba},\hfill \\ {}\hfill {\dot{\sigma}}_{ac}=& -\left({\gamma}_{\mathrm{g}}+i{\delta}_3\right){\sigma}_{ac}+i\frac{\varOmega_3}{2}\left({\sigma}_{cc}-{\sigma}_{aa}\right)\hfill \\ {}\hfill & +i\frac{\varOmega_1}{2}{\mathrm{e}}^{-i{\Delta}_Tt}{\mathrm{e}}^{i{\varPhi}_T}{\sigma}_{bc}-i\frac{\varOmega_2}{2}{\mathrm{e}}^{-i{\Delta}_Tt}{\mathrm{e}}^{i{\varPhi}_T}{\sigma}_{ab}.\hfill \end{array}} $$
(12)

These equations become time-independent only in the case of \( {\Delta}_T=0 \), leading to time-independent populations \( {\rho}_{ii} \) and to \( {\rho}_{ij} \) coherences with oscillations at the corresponding laser driving frequency given by Eq. 11.

For \( {\Delta}_T\ne 0 \) the time-dependent density matrix equations were solved in Ref. [20] through a series expansion in terms of the Rabi frequencies, where the connection between Rabi frequency power dependence and the high-order multiphoton processes was pointed out.

Within the approach of Eq. 6, each density matrix element is expanded into a Fourier expansion with all the harmonics of the \( {\Delta}_T \) angular frequency. The Fourier harmonics are proportional to the Rabi frequencies, higher-order terms containing higher powers of the Rabi frequencies, and therefore produced by high-order multiphoton processes. The Fourier components satisfy recurrent equations that can be solved through a continued fraction solution as in refs. [23, 49]. The triangle configuration with a \( 9\times 9 \) density matrix leads to a continued fraction of matrices with the same order. Instead the four-level system is solved on the basis of \( 16\times 16 \) continued fraction matrices.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arimondo, E. (2018). Laser Phase Spectroscopy in Closed-Loop Multilevel Schemes. In: Meschede, D., Udem, T., Esslinger, T. (eds) Exploring the World with the Laser. Springer, Cham. https://doi.org/10.1007/978-3-319-64346-5_36

Download citation

Publish with us

Policies and ethics