Skip to main content

Acute Promyelocytic Leukemia

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

Acute promyelocytic leukemia (APL) is designated M3 in the French-American-British (FAB) classification. Because of its unique clinical features and unique response to certain differentiation-inducing agents, and because of our advanced understanding of the molecular biology and treatment of this leukemia, APL deserves to be presented and discussed in detail, apart from the other acute myeloid leukemias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hillestad L. Acute promyelocytic leukemia. Acta Med Scand. 1957;159:189.

    Article  CAS  PubMed  Google Scholar 

  2. Stavem P. Acute hypergranular promyelocytic leukemia. Priority of discovery. Scand J Haematol. 1978;20:287.

    CAS  PubMed  Google Scholar 

  3. Caen J, Mathe G, Xuan Chat L, Bernard J. Etude de la fibrinolyse au cours des hémopathies malignes. In: Transactions of the 6th Congress of the European Society of Hématology. Basel: Karger; 1957. p. 502.

    Google Scholar 

  4. Bernard J, Mathe G, Boulay J, Ceoura B. La leucose aiguë à promyélocytes. Etude portant sur 20 observations. J Suisse Med. 1959;23:604.

    Google Scholar 

  5. Bernard J, Weil M, Boiron M, et al. Acute promyelocytic leukemia. Results with daunorubicin. Blood. 1973;41:489.

    CAS  PubMed  Google Scholar 

  6. Golomb HM, Rowley JD, Vardiman J, et al. Partial deletion of long arm of chromosome 7. A specific abnormality in acute promyelocytic leukemia? Arch Intern Med. 1976;136:825.

    Article  CAS  PubMed  Google Scholar 

  7. Rowley J, Golomb H, Dougherty C. 15/17 translocation: a consistent chromosomal change in acute promyelocytic leukemia. Lancet. 1977;1:549.

    Article  CAS  PubMed  Google Scholar 

  8. Larson RA, Kondo K, Vardiman JW, et al. Evidence for a 15;17 translocation in every patient with acute promyelocytic leukemia. Am J Med. 1984;76:827.

    Article  CAS  PubMed  Google Scholar 

  9. Kantarjian HM, Keating MJ, Walters RS, et al. Acute promyelocytic leukemia. M.D. Anderson Hospital experience. Am J Med. 1986;80:789.

    Article  CAS  PubMed  Google Scholar 

  10. Stone RM, Maguire M, Goldberg MA, et al. Complete remission in acute promyelocytic leukemia despite persistence of abnormal bone marrow promyelocytes during induction therapy: expertonce in 34 patients. Blood. 1988;71:690.

    CAS  PubMed  Google Scholar 

  11. Brittan T, Selznick S, Collins S. Induction of differentiation of the human promyelocytic leukemic cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A. 1980;77:2936.

    Article  Google Scholar 

  12. Huang M-E, Ye Y-C, Chen S-R, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72:567.

    CAS  PubMed  Google Scholar 

  13. Fenaux P, Chas tang C, Degas L. Treatment of newly diagnosed acute promyelocytic leukemia (APL) by a combination of alltrans retinoic acid (ATRA) and chemotherapy. Leukemia. 1994;8(Suppl 2):S42.

    PubMed  Google Scholar 

  14. Chen GQ, Shi XG, Tang W, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As203 exerts dose-dependent dual effects on APL cells. Blood. 1997;89:3345.

    CAS  PubMed  Google Scholar 

  15. Wiernik PH. Acute promyelocytic leukemia: another pseudoleukemia? Blood. 1990;76:1675.

    CAS  PubMed  Google Scholar 

  16. Degos L. Is acute promyelocytic leukemia a curable disease? Treatment strategy for a long-term survival. Leukemia. 1994;8:S6.

    PubMed  Google Scholar 

  17. Bernard J. History of promyelocytic leukemia. Leukemia. 1994;8(Suppl 2):1.

    Google Scholar 

  18. Breitman TR, Collins SJ, Keene BR. Terminal differentiation of human promyelocytic leukemic cells in primary culture in response to retinoic acid. Blood. 1981;57:1000–4.

    CAS  PubMed  Google Scholar 

  19. Huang M-E, Ye Y-C, Chen S-R, Chai J-R, Lu J-X, Lin Z, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72:567–72.

    CAS  PubMed  Google Scholar 

  20. Borrow J, Goddard AD, Sheer D, Solomon E. Molecular analysis of acute promyelocytic leukemia breakpoint cluster region on chromosome 17. Science. 1990;249:1577–80.

    Article  CAS  PubMed  Google Scholar 

  21. de The H, Chomienne C, Lanotte M, Degos L, Dejean A. The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor Ë gene to a novel transcribed locus. Nature. 1990;347:558–61.

    Article  PubMed  Google Scholar 

  22. Longo L, Pandolfi P, Biondi A, Rambaldi A, Mencarelli A, Lo Coco F, et al. Rearrangements and aberrant expression of the retinoic acid receptor Ï gene in acute promyelocytic leukemias. J Exp Med. 1990;172:1571–5.

    Article  CAS  PubMed  Google Scholar 

  23. Petkovich M, Brand NJ, Krust A, Chambon P. A human retinoic acid receptor which belongs to the family of nuclear receptors. Nature. 1987;330:444–50.

    Article  CAS  PubMed  Google Scholar 

  24. Giguere V, Ong ES, Segui P, Evans RM. Identification of a receptor for the morphogen retinoic acid. Nature. 1987;330:624–9.

    Article  CAS  PubMed  Google Scholar 

  25. de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A. The PML-RARa fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell. 1991;66:675–84.

    Article  PubMed  Google Scholar 

  26. Kakizuka A, Miller WH Jr, Umesono K, Warrell RP Jr, Frankel SR, Murty VVVS, et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARa with a novel putative transcription factor PML. Cell. 1991;66:663–74.

    Article  CAS  PubMed  Google Scholar 

  27. Pandolfi P, Grignani F, Alcalay M, Mencarelli A, Biondi A, LoCoco F, et al. Structure and origin of the acute promyelocytic leukemia myl/RARa cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene. 1991;6:1285–92.

    CAS  PubMed  Google Scholar 

  28. Chen Z, Brand N, Chen A, Chen S, Tong J, Wang Z, et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-a locus due to a variant t(11;17) translocation associated with acute promyelocytic leukemia. EMBO J. 1993;12:1161–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Redner RL, Chen JD, Rush EA, Li H, Pollock SL. The t(5;17) acute promyelocytic leukemia fusion protein NPM-RAR interacts with co-repressor and co-activator proteins and exhibits both positive and negative transcriptional properties. Blood. 2000;95:2683–90.

    CAS  PubMed  Google Scholar 

  30. Wells RA, Catzavelos C, Kamel-Reid S. Fusion of retinoic acid receptor a to NuMA, the nuclear mitotic apparatus protein by a variant translocation in acute promyelocytic leukemia. Nat Genet. 1997;17:109–13.

    Article  CAS  PubMed  Google Scholar 

  31. Arnould C, Philippe C, Bourdon V, Gregoire MJ, Berger R, Jonveaux P. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor a in acute promyelocytic-like leukaemia. Hum Mol Genet. 1999;8:1741–9.

    Article  CAS  PubMed  Google Scholar 

  32. Catalano A, Dawson MA, Somana K, Opat S, Schwarer A, Campbell LJ, et al. The PRKAR1A gene is fused to RARA in a new variant acute promyelocytic leukemia. Blood. 2007;110(12):4073–6.

    Article  CAS  PubMed  Google Scholar 

  33. Kondo T, Mori A, Darmanin S, Hashino S, Tanaka J, Asaka M. The seventh pathogenic fusion gene FIP1L1-RARA was isolated from a t(4;17)-positive acute promyelocytic leukemia. Haematologica. 2008;93(9):1414–6.

    Article  CAS  PubMed  Google Scholar 

  34. Zelent A, Guidez F, Melnick A, Waxman S, Licht JD. Translocations of the RARalpha gene in acute promyelocytic leukemia. Oncogene. 2001;20(49):7186–203.

    Article  CAS  PubMed  Google Scholar 

  35. Scaglioni PP, Pandolfi PP. The theory of APL revisited. Curr Top Microbiol Immunol. 2007;313:85–100.

    CAS  PubMed  Google Scholar 

  36. Chen GQ, Zhu J, Shi XG, Zhong HJ, Ni JH, Si GY, et al. In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of bcl-2 expression and alteration of PML-RARa/PML protein localization. Blood. 1996;88:1052–61.

    CAS  PubMed  Google Scholar 

  37. Lanotte M, Martin-Thouvenin B, Najman S, Balerini P, Valensi F, Berger R. NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood. 1991;77(5):1080–6.

    CAS  PubMed  Google Scholar 

  38. Gallagher R, Collins S, Trujillo J, McCredie K, Ahearn M, Tsai S, et al. Characterization of the continuous, differentiating myeloid leukemia cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood. 1979;54:713–33.

    CAS  PubMed  Google Scholar 

  39. Breitman T, Selonick S, Collins S. Induction of differentiation of the human promyelocytic leukemic cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A. 1980;77:2936–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kogan SC. Mouse models of acute promyelocytic leukemia. Curr Top Microbiol Immunol. 2007;313:3–29.

    CAS  PubMed  Google Scholar 

  41. Nasr R, Guillemin MC, Ferhi O, Soilihi H, Peres L, Berthier C, et al. Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med. 2008;14(12):1333–42.

    Article  CAS  PubMed  Google Scholar 

  42. Wojiski S, Guibal FC, Kindler T, Lee BH, Jesneck JL, Fabian A, et al. PML-RARalpha initiates leukemia by conferring properties of self-renewal to committed promyelocytic progenitors. Leukemia. 2009;23(8):1462–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Guibal FC, Alberich-Jorda M, Hirai H, Ebralidze A, Levantini E, Di Ruscio A, et al. Identification of a myeloid committed progenitor as the cancer-initiating cell in acute promyelocytic leukemia. Blood. 2009;114(27):5415–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J. 1996;10:940–54.

    Article  CAS  PubMed  Google Scholar 

  45. Kurokawa R, DiRenzo J, Boehm M, Sugarman J, Gloss B, Rosenfeld M, et al. Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature. 1994;371:528–31.

    Article  CAS  PubMed  Google Scholar 

  46. Renaud J-P, Rochel N, Ruff M, Vivat V, Chambon P, Gronemeyer H, et al. Crystal structure of the RAR-g ligand binding domain bound to all-trans retinoic acid. Nature. 1995;378:681–9.

    Article  CAS  PubMed  Google Scholar 

  47. Perissi V, Staszewski LM, McInerney EM, Kurokawa R, Krones A, Rose DW, et al. Molecular determinants of nuclear receptor-corepressor interaction. Genes Dev. 1999;13:3198–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    Article  CAS  PubMed  Google Scholar 

  49. Yang XJ, Seto E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol Cell. 2008;31(4):449–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huq MD, Tsai NP, Khan SA, Wei LN. Lysine trimethylation of retinoic acid receptor-alpha: a novel means to regulate receptor function. Mol Cell Proteomics. 2007;6(4):677–88.

    Article  CAS  PubMed  Google Scholar 

  51. Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell. 1999;98(5):675–86.

    Article  CAS  PubMed  Google Scholar 

  52. Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene. 2004;328:1–16.

    Article  CAS  PubMed  Google Scholar 

  53. Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. Cell. 2002;108(4):475–87.

    Article  CAS  PubMed  Google Scholar 

  54. Ho L, Crabtree GR. Chromatin remodelling during development. Nature. 2010;463(7280):474–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Strahl BD, Allis CD. The language of covalent histone modification. Nature. 1998;403:41–5.

    Article  Google Scholar 

  56. Jensen K, Shiels C, Freemont PS. PML protein isoforms and the RBCC/TRIM motif. Oncogene. 2001;20(49):7223–33.

    Article  CAS  PubMed  Google Scholar 

  57. Borden KL. Pondering the puzzle of PML (promyelocytic leukemia) nuclear bodies: can we fit the pieces together using an RNA regulon? Biochim Biophys Acta. 2008;1783(11):2145–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Daniel M, Koken M, Romagne O, Barbey S, Bazarbachi A, Stadler M, et al. PML protein expression in hematopoietic and acute promyleocytic leukemia cells. Blood. 1993;82:1858–67.

    CAS  PubMed  Google Scholar 

  59. Terris B, Baldin V, Dubois S, Degott C, Flejou J-F, Henin D, et al. PML nuclear bodies are general targets for inflammation and cell proliferation. Cancer Res. 1995;55:1590–7.

    CAS  PubMed  Google Scholar 

  60. Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol. 2007;8:1006–16.

    Article  CAS  PubMed  Google Scholar 

  61. Van Damme E, Laukens K, Dang TH, Van Ostade X. A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci. 2010;6(1):51–67.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhong S, Muller S, Ronchetti S, Freemont PS, Dejean A, Pandolfi PP. Role of SUMO-1-modified PML in nuclear body formation. Blood. 2000;95:2748–52.

    CAS  PubMed  Google Scholar 

  63. Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L, et al. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol. 2008;10(5):547–55.

    Article  CAS  PubMed  Google Scholar 

  64. Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol. 2008;10(5):538–46.

    Article  CAS  PubMed  Google Scholar 

  65. Reineke EL, Kao HY. Targeting promyelocytic leukemia protein: a means to regulating PML nuclear bodies. Int J Biol Sci. 2009;5(4):366–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C, et al. Role of PML in cell growth and the retinoic acid pathway. Science. 1998;279:1547–51.

    Article  CAS  PubMed  Google Scholar 

  67. Bernardi R, Papa A, Pandolfi PP. Regulation of apoptosis by PML and the PML-NBs. Oncogene. 2008;27(48):6299–312.

    Article  CAS  PubMed  Google Scholar 

  68. Gurrieri C, Capodieci P, Bernardi R, Scaglioni PP, Nafa K, Rush LJ, et al. Loss of the tumor suppressor PML in human cancers of multiple histologic origins. J Natl Cancer Inst. 2004;96(4):269–79.

    Article  CAS  PubMed  Google Scholar 

  69. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature. 2008;453(7198):1072–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Borden KLB, Boddy MN, Lally J, O’Reilly NJ, Martin S, Howe K, et al. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J. 1995;14:1532–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Slack JL, Willman CL, Andersen JW, Li Y-P, Viswanatha DS, Bloomfield CD, et al. Molecular analysis and clinical outcome of adult APL patients with the type V PML-RARa isoform: results from Intergroup protocol 0129. Blood. 2000;95:398–403.

    CAS  PubMed  Google Scholar 

  72. Gu BW, Xiong H, Zhou Y, Chen B, Dong S, Yu ZY, et al. Variant-type PML-RARa fusion transcript in acute promyelocytic leukemia: use of a cryptic coding sequence from intron 2 of the RARa gene and identification of a new clinical subtype of retinoic acid therapy. Proc Natl Acad Sci U S A. 2002;99:7640–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Reiter A, Saussele S, Grimwade D, Wiemels JL, Segal MR, Lafage-Pochitaloff M, et al. Genomic anatomy of the specific reciprocal translocation t(15;17) in acute promyelocytic leukemia. Genes Chromosomes Cancer. 2003;36(2):175–88.

    Article  CAS  PubMed  Google Scholar 

  74. Gallagher RE, Willman CL, Slack JL, Andersen JW, Li YP, Viswanatha D, et al. Association of PML-RARa fusion mRNA type with pretreatment hematologic characteristics but not treatment outcome in acute promyelocytic leukemia: an intergroup molecular study. Blood. 1997;90:1656–63.

    CAS  PubMed  Google Scholar 

  75. Kane JR, Head DR, Balazs L, Hulshof MG, Motroni TA, Raimondi SC, et al. Molecular analysis of the PML/RAR alpha chimeric gene in pediatric acute promyelocytic leukemia. Leukemia. 1996;10(8):1296–302.

    CAS  PubMed  Google Scholar 

  76. Guglielmi C, Martelli MP, Diverio D. Immunophenotype of adult and childhood acute promyelocytic leukaemia: correlation with morphology, type of PML gene breakpoint and clinical outcome: a cooperative Italian study on 196 cases. Br J Haematol. 1998;102:1035–10941.

    Article  CAS  PubMed  Google Scholar 

  77. Alcalay M, Zangrilli D, Fagioli M, Pandolfi P, Mencarelli A, Lo Coco F, et al. Expression pattern of the RARa-PML fusion gene in acute promyelocytic leukemia. Proc Natl Acad Sci U S A. 1992;89:4840–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Borrow J, Goddard AD, Gibbons B, Katz F, Swirsky D, Fioretos T, et al. Diagnosis of acute promyelocytic leukaemia by RT-PCR detection of PML-RARA and RARA-PML fusion transcripts. Br J Haematol. 1992;82:529–40.

    Article  CAS  PubMed  Google Scholar 

  79. Li YP, Andersen J, Zelent A, Rao S, Paietta E, Tallman MS, et al. RARa1/RARa2-PML mRNA expression in acute promyelocytic leukemia cells: a molecular and laboratory-clinical correlative study. Blood. 1997;90:306–12.

    CAS  PubMed  Google Scholar 

  80. Walz C, Grimwade D, Saussele S, Lengfelder E, Hafelach C, Schnittger S, et al. Atypical mRNA fusions in PML-RARA positive, RARA-PML negative acute promyelocytic leukemia. Genes Chromosomes Cancer. 2010;49:471–9.

    CAS  PubMed  Google Scholar 

  81. Mistry AR, Felix CA, Whitmarsh RJ, Mason A, Reiter A, Cassinat B, et al. DNA topoisomerase II in therapy-related acute promyelocytic leukemia. N Engl J Med. 2005;352(15):1529–38.

    Article  CAS  PubMed  Google Scholar 

  82. Hasan SK, Mays AN, Ottone T, Ledda A, La Nasa G, Cattaneo C, et al. Molecular analysis of t(15;17) genomic breakpoints in secondary acute promyelocytic leukemia arising after treatment of multiple sclerosis. Blood. 2008;112(8):3383–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mays AN, Osheroff N, Xiao Y, Wiemels JL, Felix CA, Byl JA, et al. Evidence for direct involvement of epirubicin in the formation of chromosomal translocations in t(15;17) therapy-related acute promyelocytic leukemia. Blood. 2010;115(2):326–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. McHale CM, Wiemels JL, Zhang L, Ma X, Buffler PA, Feusner J, et al. Prenatal origin of childhood acute myeloid leukemias harboring chromosomal rearrangements t(15;17) and inv(16). Blood. 2003;101(11):4640–1.

    Article  CAS  PubMed  Google Scholar 

  85. Collins SJ. Acute promyelocytic leukemia: relieving repression induces remission. Blood. 1998;91(8):2631–3.

    CAS  PubMed  Google Scholar 

  86. Lin RJ, Evans RM. Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers. Mol Cell. 2000;5:821–30.

    Article  CAS  PubMed  Google Scholar 

  87. Onodera M, Kunisada T, Nishikawa S, Sakiyama Y, Matsumoto S, Nishikawa S. Overexpression of retinoic acid receptor alpha suppresses myeloid cell differentiation at the promyelocyte stage. Oncogene. 1995;11:1291–8.

    CAS  PubMed  Google Scholar 

  88. Du C, Redner RL, Cooke MP, Lavau C. Overexpression of wild-type retinoic acid receptor alpha (RARalpha) recapitulates retinoic acid-sensitive transformation of primary myeloid progenitors by acute promyelocytic leukemia RARalpha-fusion genes. Blood. 1999;94:793–802.

    CAS  PubMed  Google Scholar 

  89. Robertson K, Emami B, Collins S. Retinoic acid-resistant HL-60R cells harbor a point mutation in the retinoic acid receptor ligand-binding domain that confers dominant negative activity. Blood. 1992;80:1885–8.

    CAS  PubMed  Google Scholar 

  90. Grignani F, Valtieri M, Gabbianelli M, Gelmetti V, Botta R, Luchetti L, et al. PML/RARa fusion protein expression in normal human hematopoietic progenitors dictates myeloid commitment and the promyelocytic phenotype. Blood. 2000;96:1531–7.

    CAS  PubMed  Google Scholar 

  91. Yoshida H, Kitamura K, Tanaka K, Omura S, Miyazaki T, Hachiya T, et al. Accelerated degradation of PML-retinoic acid receptor a (PML-RARA) oncoprotein by all-trans retinoic acid in acute promyelocytic leukemia: Possible role of the proteasome pathway. Cancer Res. 1996;56:2945–8.

    CAS  PubMed  Google Scholar 

  92. Zhu J, Gianni M, Kopf E, Honore N, Chelbi-Alix M, Koken M, et al. Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor a (RARa) and oncogenic RARa fusion proteins. Proc Natl Acad Sci U S A. 1999;96:14807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lin RJ, Nagy L, Inoue S, Shao W, Miller WH Jr, Evans RM. Role of the histone deacetylase complex in acute promyelocytic leukemia. Nature. 1998;391:811–4.

    Article  CAS  PubMed  Google Scholar 

  94. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, et al. Fusion proteins of the retinoic acid receptor-a recruit histone deacetylase in promyelocytic leukemia. Nature. 1998;391:815–7.

    Article  CAS  PubMed  Google Scholar 

  95. Guidez F, Ivins S, Zhu J, Soderstrom M, Waxman S, Zelent A. Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARa underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood. 1998;91:2634–42.

    CAS  PubMed  Google Scholar 

  96. Di Croce L, Raker VA, Corsaro M, Faxi F, Fanelli M, Faretta M, et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science. 2002;295:1079–82.

    Article  PubMed  Google Scholar 

  97. Carbone R, Botrugno OA, Ronzoni S, Insinga A, Di Croce L, Pelicci PG, et al. Recruitment of the histone methyltransferase SUV39H1 and its role in the oncogenic properties of the leukemia-associated PML-retinoic acid receptor fusion protein. Mol Cell Biol. 2006;26(4):1288–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Villa R, Morey L, Raker VA, Buschbeck M, Gutierrez A, De Santis F, et al. The methyl-CpG binding protein MBD1 is required for PML-RAR alpha function. Proc Natl Acad Sci U S A. 2006;103(5):1400–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Vire E, et al. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. Cancer Cell. 2007;11(6):513–25.

    Article  CAS  PubMed  Google Scholar 

  100. Morey L, Brenner C, Fazi F, Villa R, Gutierrez A, Buschbeck M, et al. MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks. Mol Cell Biol. 2008;28(19):5912–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kogan SC, Hong SH, Shultz DB, Privalsky ML, Bishop JM. Leukemia initiated by PMLRARa: the PML domain plays a critical role while retinoic acid-mediated transactivation is dispensable. Blood. 2000;95:1541–50.

    CAS  PubMed  Google Scholar 

  102. Matsushita H, Scaglioni PP, Bhaumik M, Rego EM, Cai LF, Majid SM, et al. In vivo analysis of the role of aberrant histone deacetylase recruitment and RAR alpha blockade in the pathogenesis of acute promyelocytic leukemia. J Exp Med. 2006;203(4):821–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sternsdorf T, Phan VT, Maunakea ML, Ocampo CB, Sohal J, Silletto A, et al. Forced retinoic acid receptor a homodimers prime mice for APL-like leukemia. Cancer Cell. 2006;9:81–94.

    Article  CAS  PubMed  Google Scholar 

  104. Kwok C, Zeisig BB, Dong S, So CW. Forced homo-oligomerization of RARalpha leads to transformation of primary hematopoietic cells. Cancer Cell. 2006;9(2):95–108.

    Article  CAS  PubMed  Google Scholar 

  105. Licht JD. Reconstructing a disease: what essential features of the retinoic acid receptor fusion oncoproteins generate actue promyelocytic leukemia? Cancer Cell. 2006;9:73–4.

    Article  CAS  PubMed  Google Scholar 

  106. Koken MHM, Reid A, Quignon F, Chelbi-Alix MK, Dong S, Chen S-J, et al. Leukaemia-associated RARa fusion partners, PML and PLZF, heterodimerize and co-localize onto nuclear bodies. Proc Natl Acad Sci U S A. 1997;94:10255–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhu J, Zhou J, Peres L, Riaucoux F, Honore N, Kogan SC, et al. A sumoylation site in PML/RARA is essential for leukemic transformation. Cancer Cell. 2005;7:143–53.

    Article  CAS  PubMed  Google Scholar 

  108. Rego EM, Wang ZG, Peruzzi D, He LZ, Cordon-Cardo C, Pandolfi PP. Role of promyelocytic leukemia (PML) protein in tumor suppression. J Exp Med. 2001;193:521–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Koken MHM, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N, et al. The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J. 1994;13:1073–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Zeisig BB, Kwok C, Zelent A, Shankaranarayanan P, Gronemeyer H, Dong S, et al. Recruitment of RXR by homotetrameric RARalpha fusion proteins is essential for transformation. Cancer Cell. 2007;12(1):36–51.

    Article  CAS  PubMed  Google Scholar 

  111. Zhu J, Nasr R, Peres L, Riaucoux-Lormiere F, Honore N, Berthier C, et al. RXR is an essential component of the oncogenic PML/RARA complex in vivo. Cancer Cell. 2007;12(1):23–35.

    Article  CAS  PubMed  Google Scholar 

  112. Minucci S, Pelicci PG. Determinants of oncogenic transformation in acute promyelocytic leukemia: the hetero-union makes the force. Cancer Cell. 2007;12(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  113. Zimonjic DB, Pollock JL, Westervelt P, Popescu NC, Ley TJ. Acquired, nonrandom chromosomal abnormalities associated with the development of acute promyelocytic leukemia in transgenic mice. Proc Natl Acad Sci U S A. 2000;97(24):13306–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Le Beau MM, Bitts S, Davis EM, Kogan SC. Recurring chromosomal abnormalities in leukemia in PML-RARA transgenic mice parallel human acute promyelocytic leukemia. Blood. 2002;99(8):2985–91.

    Article  PubMed  Google Scholar 

  115. Walter MJ, Park JS, Lau SKM, Li X, Lane AA, Nagarajan R, et al. Expression profiling of murine acute promyelocytic leukemia cells reveals multiple model-dependent progression signatures. Mol Cell Biol. 2004;24:10882–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Walter MJ, Park JS, Ries RE, Lau SK, McLellan M, Jaeger S, et al. Reduced PU.1 expression causes myeloid progenitor expansion and increased leukemia penetrance in mice expressing PML-RARalpha. Proc Natl Acad Sci U S A. 2005;102(35):12513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kelly LM, Kutok JL, Williams IR, Boulton CL, Amarat SM, Curley DP, et al. PML/RARa and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci U S A. 2002;99:8283–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chan IT, Kutok JL, Williams IR, Cohen S, Moore S, Shigematsu H, et al. Oncogenic K-ras cooperates with PML-RAR alpha to induce an acute promyelocytic leukemia-like disease. Blood. 2006;108(5):1708–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Westervelt P, Lane AA, Pollock JL, Oldfather K, Holt MS, Zimonjic DB, et al. High-penetrance mouse model of acute promyelocytic leukemia with very low levels of PML-RARa expression. Blood. 2003;102:1857–65.

    Article  CAS  PubMed  Google Scholar 

  120. Lane AA, Ley TJ. Neutrophil elastase is important for PML-retinoic acid receptor alpha activities in early myeloid cells. Mol Cell Biol. 2005;25(1):23–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Alcalay M, Meani N, Gelmetti V, Fantozzi A, Fagioli M, Orleth A, et al. Acute myeloid leukemia fusion proteins deregulate genes involved in stem cell maintenance and DNA repair. J Clin Invest. 2003;112(11):1751–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Park DJ, Vuong PT, de Vos S, Douer D, Koeffler HP. Comparative analysis of genes regulated by PML/RAR alpha and PLZF/RAR alpha in response to retinoic acid using oligonucleotide arrays. Blood. 2003;102(10):3727–36.

    Article  CAS  PubMed  Google Scholar 

  123. Muller-Tidow C, Steffen B, Cauvet T, Tickenbrock L, Ji P, Diederichs S, et al. Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol. 2004;24(7):2890–904.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  124. Perez A, Kastner P, Sethi S, Lutz Y, Reibel C, Chambon P. PMLRAR homodimers: distinct DNA binding properties and heterodimeric interactions with RXR. EMBO J. 1993;12:3171–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Kamashev D, Vitoux D, De The H. PML-RARA-RXR oligomers mediate retinoid and rexinoid/cAMP cross-talk in acute promyelocytic leukemia cell differentiation. J Exp Med. 2004;199(8):1163–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Meani N, Minardi S, Licciulli S, Gelmetti V, Coco FL, Nervi C, et al. Molecular signature of retinoic acid treatment in acute promyelocytic leukemia. Oncogene. 2005;24(20):3358–68.

    Article  CAS  PubMed  Google Scholar 

  127. Hoemme C, Peerzada A, Behre G, Wang Y, McClelland M, Nieselt K, et al. Chromatin modifications induced by PML-RARalpha repress critical targets in leukemogenesis as analyzed by ChIP-Chip. Blood. 2008;111(5):2887–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Martens JH, Brinkman AB, Simmer F, Francoijs KJ, Nebbioso A, Ferrara F, et al. PML-RARalpha/RXR alters the epigenetic landscape in acute promyelocytic leukemia. Cancer Cell. 2010;17(2):173–85.

    Article  CAS  PubMed  Google Scholar 

  129. Wang K, Wang P, Shi J, Zhu X, He M, Jia X, et al. PML/RARalpha targets promoter regions containing PU.1 consensus and RARE half sites in acute promyelocytic leukemia. Cancer Cell. 2010;17(2):186–97.

    Article  CAS  PubMed  Google Scholar 

  130. van Wageningen S, Breems-de Ridder MC, Nigten J, Nikoloski G, Erpelinck-Verschueren CA, Lowenberg B, et al. Gene transactivation without direct DNA binding defines a novel gain-of-function for PML-RARalpha. Blood. 2008;111(3):1634–43.

    Article  PubMed  CAS  Google Scholar 

  131. Mueller BU, Pabst T, Fos J, Petkovic V, Fey MF, Asou N, et al. ATRA resolves the differentiation block in t(15;17) acute myeloid leukemia by restoring PU.1 expression. Blood. 2006;107(8):3330–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Duprez E, Wagner K, Koch H, Tenen DG. C/EBPbeta: a major PML-RARA-responsive gene in retinoic acid-induced differentiation of APL cells. EMBO J. 2003;22(21):5806–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Doucas V, Brockes J, Yaniv M, de The H, Dejean A. The PML-retinoic acid receptor-a translocation converts the receptor from an inhibitor to a retinoic acid-dependent activator of transcription factor AP-1. Proc Natl Acad Sci U S A. 1993;90:9345–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tussie-Luna MI, Rozo L, Roy AL. Pro-proliferative function of the long isoform of PML-RARalpha involved in acute promyelocytic leukemia. Oncogene. 2006;25(24):3375–86.

    Article  CAS  PubMed  Google Scholar 

  135. Yuan W, Payton JE, Holt MS, Link DC, Watson MA, DiPersio JF, et al. Commonly dysregulated genes in murine APL cells. Blood. 2007;109(3):961–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chang LW, Payton JE, Yuan W, Ley TJ, Nagarajan R, Stormo GD. Computational identification of the normal and perturbed genetic networks involved in myeloid differentiation and acute promyelocytic leukemia. Genome Biol. 2008;9(2):R38.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  137. Wethkamp N, Klempnauer KH. Daxx is a transcriptional repressor of CCAAT/enhancer-binding protein beta. J Biol Chem. 2009;284(42):28783–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Grimwade D, Biondi A, Mozziconacci MJ, Hagemeijer A, Berger R, Neat M, et al. Characterization of acute promyelocytic leukemia cases lacking the classic t(15;17): results of the European Working Party. Blood. 2000;96:1297–308.

    CAS  PubMed  Google Scholar 

  139. Gallagher RE, Mak S, Paietta E, Cooper B, Ehmann C, Tallman MS. Identification of a second acute promyelocytic leukemia (APL) patient with the STAT-RARa fusion gene among PML-RARa-negative Eastern Cooperative Oncology Group (ECOG) APL protocol registrants. Blood. 2004;104:821a.

    Google Scholar 

  140. Petti MC, Fazi F, Gentile M, Diverio D, De Faritiis P, De Propris MS, et al. Complete remission through blast cell differentiation in PLZF/RARa-positive acute promyelocytic leukemia: in vitro and in vivo studies. Blood. 2002;100:1065–7.

    Article  CAS  PubMed  Google Scholar 

  141. Sainty D, Liso V, Cantu-Rajnoldi A, Head D, Mozziconacci MJ, Arnoulet C, et al. A new morphologic classification system for acute promyelocytic leukemia distinguishes cases with underlying PLZF/RARA gene rearrangements. Group Francais de Cytogenetique Hematologique, UK Cancer Cytogenetics Group and BIOMED 1 European Coomunity-Concerted Acion “Molecular Cytogenetic Diagnosis in Haematological Malignancies”. Blood. 2000;96(4):1287–96.

    CAS  PubMed  Google Scholar 

  142. Koken MH, Daniel MT, Gianni M, Zelent A, Licht J, Buzyn A, et al. Retinoic acid, but not arsenic trioxide, degrades the PLZF/RARalpha fusion protein, without inducing terminal differentiation or apoptosis, in a RA-therapy resistant t(11;17)(q23;q21) APL patient. Oncogene. 1999;18(4):1113–8.

    Article  CAS  PubMed  Google Scholar 

  143. Rego EM, He LZ, Warrell RP Jr, Wang ZG, Pandolfi PP. Retinoic acid (RA) and As2O3 treatment in transgenic models of acute promyelocytic leukemia (APL) unravel the distinct nature of the leukemogenic process induced by the PML-RARalpha and PLZF-RARalpha oncoproteins. Proc Natl Acad Sci U S A. 2000;97:10173–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Rice KL, Hormaeche I, Doulatov S, Flatow JM, Grimwade D, Mills KI, et al. Comprehensive genomic screens identify a role for PLZF-RARalpha as a positive regulator of cell proliferation via direct regulation of c-MYC. Blood. 2009;114(27):5499–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A, et al. Distinct interactions of PML-RARa and PLZF-RARa with co-repressors determine differential responses to RA in APL. Nat Genet. 1998;18:126–34.

    Article  CAS  PubMed  Google Scholar 

  146. Licht J, Chomienne C, Goy A, Chen A, Scott A, Head D, et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood. 1995;85:1083–94.

    CAS  PubMed  Google Scholar 

  147. Yeyati PL, Shaknovich R, Boterashvili S, Li J, Ball HJ, Waxman S, et al. Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene. 1999;18:925.

    Article  CAS  PubMed  Google Scholar 

  148. Guidez F, Parks S, Wong H, Jovanovic JV, Mays A, Gilkes AF, et al. RARalpha-PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid resistance in t(11;17) acute promyelocytic leukemia. Proc Natl Acad Sci U S A. 2007;104(47):18694–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Buijs A, Bruin M. Fusion of FIP1L1 and RARA as a result of a novel t(4;17)(q12;q21) in a case of juvenile myelomonocytic leukemia. Leukemia. 2007;21(5):1104–8.

    Article  CAS  PubMed  Google Scholar 

  150. Cools J, Stover EH, Wlodarska I, Marynen P, Gilliland DG. The FIP1L1-PDGFRalpha kinase in hypereosinophilic syndrome and chronic eosinophilic leukemia. Curr Opin Hematol. 2004;11(1):51–7.

    Article  CAS  PubMed  Google Scholar 

  151. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor form. Blood. 1996;87:882–6.

    CAS  PubMed  Google Scholar 

  152. Wells RA, Hummel JL, De Koven A, Zipursky A, Kirby M, Dube I, et al. A new variant translocation in acute promyelocytic leukaemia: molecular characterization and clinical consideration. Leukemia. 1996;10:735–40.

    CAS  PubMed  Google Scholar 

  153. Kusakabe M, Suzukawa K, Nanmoku T, Obara N, Okoshi Y, Mukai HY, et al. Detection of the STAT5B-RARA fusion transcript in acute promyelocytic leukemia with the normal chromosome 17 on G-banding. Eur J Haematol. 2008;80(5):444–7.

    Article  CAS  PubMed  Google Scholar 

  154. Redner RL, Corey SL, Rush EA. Differentiation of t(5;17) variant acute promyelocytic leukemic blasts by all-trans retinoic acid. Leukemia. 1997;11:1014–6.

    Article  CAS  PubMed  Google Scholar 

  155. Okazuka K, Masuko M, Seki Y, Hama H, Honma N, Furukawa T, et al. Successful all-trans retinoic acid treatment of acute promyelocytic leukemia in a patient with NPM/RAR fusion. Int J Hematol. 2007;86(3):246–9.

    Article  CAS  PubMed  Google Scholar 

  156. Rego EM, Ruggero D, Tribioli C, Cattoretti G, Kogan S, Redner RL, et al. Leukemia with distinct phenotypes in transgenic mice expressing PML/RAR alpha, PLZF/RAR alpha or NPM/RAR alpha. Oncogene. 2006;25(13):1974–9.

    Article  CAS  PubMed  Google Scholar 

  157. Chen Y, Gu L, Zhou C, Wu X, Gao J, Li Q, et al. Relapsed APL patient with variant NPM-RARalpha fusion responded to arsenic trioxide-based therapy and achieved long-term survival. Int J Hematol. 2010;91(4):708–10.

    Article  PubMed  Google Scholar 

  158. Lafage-Pochitaloff M, Alcalay M, Brunel V, Longo L, Sainty D, Simonetti J, et al. Acute promyelocytic leukemia cases with nonreciprocal PML/RARa or RARa/PML fusion genes. Blood. 1995;85(5):1169–74.

    CAS  PubMed  Google Scholar 

  159. Raelson JV, Nervi C, Rosenauer A, Benedetti L, Monczak Y, Pearson M, et al. The PML/RARa oncoprotein is a direct molecular target of retinoic acid in acute promyelocytic leukemia cells. Blood. 1996;88:2826–32.

    CAS  PubMed  Google Scholar 

  160. Zhu J, Koken MHM, Quignon F, Chelbi-Alix MK, Degos L, Wang ZY, et al. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc Natl Acad Sci U S A. 1997;94:3978–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci U S A. 1999;96:2907–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Liu T-X, Zhang J-W, Tao J, Zhang R-B, Zhang Q-H, Zhao C-J, et al. Gene expression networks underlying retinoic acid-induced differentiation of acute promyelocytic leukemia cells. Blood. 2000;96:1496–504.

    CAS  PubMed  Google Scholar 

  163. Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med. 2001;6:680–6.

    Article  CAS  Google Scholar 

  164. Park DJ, Chumakov AM, Vuong PT, Chih DY, Gombart AF, Miller WH Jr, et al. CCAAT/enhancer binding protein e is a potential retinoid target gene in acute promyelocytic leukemia treatment. J Clin Invest. 1999;103:1399–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Zheng PZ, Wang KK, Zhang QY, Huang QH, Du YZ, Zhang QH, et al. Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A. 2005;102(21):7653–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Imaizumi M, Suzuki H, Yoshinari M, Sato A, Saito T, Sugawara A, et al. Mutations in the E-domain of RARa portion of the PML/RARa chimeric gene may confer clinical resistance to all-trans retinoic acid in acute promyelocytic leukemia. Blood. 1998;92:374–82.

    CAS  PubMed  Google Scholar 

  167. Ding W, Li YP, Nobile LM, Grills G, Carrera I, Paietta E, et al. Leukemic cellular retinoic acid resistance and missense mutations in the PML-RARa fusion gene after relapse of acute promyelocytic leukemia from treatment with all-trans retinoic acid and intensive chemotherapy. Blood. 1998;92:1172–83.

    CAS  PubMed  Google Scholar 

  168. Gallagher RE. Retinoic acid resistance in acute promyelocytic leukemia. Leukemia. 2002;16:1940–58.

    Article  CAS  PubMed  Google Scholar 

  169. Truong BT, Lee YJ, Lodie TA, Park DJ, Perrotti D, Watanabe N, et al. CCAAT/Enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia. Blood. 2003;101(3):1141–8.

    Article  CAS  PubMed  Google Scholar 

  170. Yoshida H, Ichikawa H, Tagata Y, Katsumoto T, Ohnishi K, Akao Y, et al. PML-retinoic acid receptor alpha inhibits PML IV enhancement of PU.1-induced C/EBPepsilon expression in myeloid differentiation. Mol Cell Biol. 2007;27(16):5819–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Jing Y, Dai J, Chalmers-Redman RME, Tatton WG, Waxman S. Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood. 1999;94:2102–11.

    CAS  PubMed  Google Scholar 

  172. Nervi C, Ferrara FF, Fanelli M, Tippo MP, Tomassini B, Ferrucci PF, et al. Caspases mediate retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARa fusion protein. Blood. 1998;92:2244–51.

    CAS  PubMed  Google Scholar 

  173. Shah SJ, Blumen S, Pitha-Rowe I, Kitareewan S, Freemantle SJ, Feng Q, et al. UBE1L represses PML/RAR{alpha} by targeting the PML domain for ISG15ylation. Mol Cancer Ther. 2008;7(4):905–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Harris MN, Ozpolat B, Abdi F, Gu S, Legler A, Mawuenyega KG, et al. Comparative proteomic analysis of all-trans-retinoic acid treatment reveals systematic posttranscriptional control mechanisms in acute promyelocytic leukemia. Blood. 2004;104(5):1314–23.

    Article  CAS  PubMed  Google Scholar 

  175. Hattori H, Zhang X, Jia Y, Subramanian KK, Jo H, Loison F, et al. RNAi screen identifies UBE2D3 as a mediator of all-trans retinoic acid-induced cell growth arrest in human acute promyelocytic NB4 cells. Blood. 2007;110(2):640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ozpolat B, Akar U, Steiner M, Zorrilla-Calancha I, Tirado-Gomez M, Colburn N, et al. Programmed cell death-4 tumor suppressor protein contributes to retinoic acid-induced terminal granulocytic differentiation of human myeloid leukemia cells. Mol Cancer Res. 2007;5(1):95–108.

    Article  CAS  PubMed  Google Scholar 

  177. Kannan-Thulasiraman P, Dolniak B, Kaur S, Sassano A, Kalvakolanu DV, Hay N, et al. Role of the translational repressor 4E-BP1 in the regulation of p21(Waf1/Cip1) expression by retinoids. Biochem Biophys Res Commun. 2008;368(4):983–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Witcher M, Ross DT, Rousseau C, Deluca L, Miller WH Jr. Synergy between all-trans retinoic acid and tumor necrosis factor pathways in acute leukemia cells. Blood. 2003;102(1):237–45.

    Article  CAS  PubMed  Google Scholar 

  179. Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S. Mechanisms of action of arsenic trioxide. Cancer Res. 2002;62(14):3893–903.

    CAS  PubMed  Google Scholar 

  180. Sumi D, Shinkai Y, Kumagai Y. Signal transduction pathways and transcription factors triggered by arsenic trioxide in leukemia cells. Toxicol Appl Pharmacol. 2010;244(3):385–92.

    Article  CAS  PubMed  Google Scholar 

  181. Cai X, Shen YL, Zhu Q, Jia PM, Yu Y, Zhou L, et al. Arsenic trioxide-induced apoptosis and differentiation are associated respectively with mitochondrial transmembrane potential collapse and retinoic acid signaling pathways in acute promyelocytic leukemia. Leukemia. 2000;14:262–70.

    Article  CAS  PubMed  Google Scholar 

  182. Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood. 1997;89:3354–60.

    CAS  PubMed  Google Scholar 

  183. Fujisawa S, Ohno R, Shigeno K, Sahara N, Nakamura S, Naito K, et al. Pharmacokinetics of arsenic species in Japanese patients with relapsed or refractory acute promyelocytic leukemia treated with arsenic trioxide. Cancer Chemother Pharmacol. 2007;59(4):485–93.

    Article  CAS  PubMed  Google Scholar 

  184. Fox E, Razzouk BI, Widemann BC, Xiao S, O’Brien M, Goodspeed W, et al. Phase 1 trial and pharmacokinetic study of arsenic trioxide in children and adolescents with refractory or relapsed acute leukemia, including acute promyelocytic leukemia or lymphoma. Blood. 2008;111(2):566–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Chen G-Q, Zhou L, Styblo M, Walton F, Jing Y, Weinberg R, et al. Methylated metabolites of arsenic trioxide are more potent than arsenic trioxide as apoptotic but not differentiation inducers in leukemia and lymphoma cells. Cancer Res. 2003;63:1853–9.

    CAS  PubMed  Google Scholar 

  186. Yoshino Y, Yuan B, Miyashita SI, Iriyama N, Horikoshi A, Shikino O, et al. Speciation of arsenic trioxide metabolites in blood cells and plasma of a patient with acute promyelocytic leukemia. Anal Bioanal Chem. 2009;393(2):689–97.

    Article  CAS  PubMed  Google Scholar 

  187. Soignet SL, Maslak P, Wang ZG, Jhanwar S, Calleja E, Dardashti LJ, et al. Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med. 1998;339:1341–8.

    Article  CAS  PubMed  Google Scholar 

  188. Sternsdorf T, Puccetti E, Jensen K, Hoelzer D, Will H, Ottmann OG, et al. PIC-1/SUMO-1 modified PML-retinoic acid receptor a mediates arsenic trioxide-induced apoptosis in acute promyelocytic leukemia. Mol Cell Biol. 1999;19:5170–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Lallemand-Breitenbach V, Zhu J, Puvion F, Koken M, Honore N, Doubeikovsky A, et al. Role of promyelocytic leukemia (PML) sumolation in nuclear body formation, 11S proteasome recruitment, and As2O3-induced PML or PML/retinoic acid receptor alpha degradation. J Exp Med. 2001;193(12):1361–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science. 2010;328(5975):240–3.

    Article  CAS  PubMed  Google Scholar 

  191. Hong SH, Yang Z, Privalsky ML. Arsenic trioxide is a potent inhibitor of the interaction of SMRT corepressor with Its transcription factor partners, including the PML-retinoic acid receptor alpha oncoprotein found in human acute promyelocytic leukemia. Mol Cell Biol. 2001;21(21):7172–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Lunghi P, Tabilio A, Lo-Coco F, Pelicci PG, Bonati A. Arsenic trioxide (ATO) and MEK1 inhibition synergize to induce apoptosis in acute promyelocytic leukemia cells. Leukemia. 2005;19(2):234–44.

    Article  CAS  PubMed  Google Scholar 

  193. Zhu X-H, Shen Y-L, Y-k J, Cai X, Jia P-M, Huang Y, et al. Apoptosis and growth inhibition in malignant lymphocytes after treatment with arsenic trioxide at clinically achievable concentrations. J Natl Cancer Inst. 1999;91:772–8.

    Article  CAS  PubMed  Google Scholar 

  194. Davison K, Cote S, Mader S, Miller WH. Glutathione depletion overcomes resistance to arsenic trioxide in arsenic-resistant cell lines. Leukemia. 2003;17(5):931–40.

    Article  CAS  PubMed  Google Scholar 

  195. Li L, Wang J, Ye RD, Shi G, Jin H, Tang X, et al. PML/RARalpha fusion protein mediates the unique sensitivity to arsenic cytotoxicity in acute promyelocytic leukemia cells: Mechanisms involve the impairment of cAMP signaling and the aberrant regulation of NADPH oxidase. J Cell Physiol. 2008;217(2):486–93.

    Article  CAS  PubMed  Google Scholar 

  196. Gianni M, Koken MHM, Chelbi-Alix MK, Benoit G, Lanotte M, Chen Z, et al. Combined arsenic and retinoic acid treatment enhances differentiation and apoptosis in arsenic-resistant NB4 cells. Blood. 1998;91:4300–10.

    CAS  PubMed  Google Scholar 

  197. Sen CK. Redox signaling and the emerging therapeutic potential of thiol antioxidants. Biochem Pharmacol. 1998;55(11):1747–58.

    Article  CAS  PubMed  Google Scholar 

  198. Dai J, Weinberg RS, Waxman S, Jing Y. Malignant cell can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood. 1999;93:268–77.

    CAS  PubMed  Google Scholar 

  199. Lu J, Chew EH, Holmgren A. Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proc Natl Acad Sci U S A. 2007;104(30):12288–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Chou WC, Jie C, Kenedy AA, Jones RJ, Trush MA, Dang CV. Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc Natl Acad Sci U S A. 2004;101(13):4578–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wang J, Li L, Cang H, Shi G, Yi J. NADPH oxidase-derived reactive oxygen species are responsible for the high susceptibility to arsenic cytotoxicity in acute promyelocytic leukemia cells. Leuk Res. 2008;32(3):429–36.

    Article  CAS  PubMed  Google Scholar 

  202. Lin P, Welch EJ, Gao XP, Malik AB, Ye RD. Lysophosphatidylcholine modulates neutrophil oxidant production through elevation of cyclic AMP. J Immunol. 2005;174(5):2981–9.

    Article  CAS  PubMed  Google Scholar 

  203. Davison K, Mann KK, Waxman S, Miller WH Jr. JNK activation is a mediator of arsenic trioxide-induced apoptosis in acute promyelocytic leukemia cells. Blood. 2004;103(9):3496–502.

    Article  CAS  PubMed  Google Scholar 

  204. Bernardini S, Nuccetelli M, Noguera NI, Bellincampi L, Lunghi P, Bonati A, et al. Role of GSTP1-1 in mediating the effect of As2O3 in the acute promyelocytic leukemia cell line NB4. Ann Hematol. 2006;85(10):681–7.

    Article  CAS  PubMed  Google Scholar 

  205. Chou WC, Chen HY, Yu SL, Cheng L, Yang PC, Dang CV. Arsenic suppresses gene expression in promyelocytic leukemia cells partly through Sp1 oxidation. Blood. 2005;106(1):304–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Shao W, Fanelli M, Ferrara FF, Riccioni R, Rosenauer A, Davison K, et al. As2O3 induced apoptosis and loss of PML/RARa protein in both retinoid sensitive and resistant APL cells. J Natl Cancer Inst. 1998;90:124–33.

    Article  CAS  PubMed  Google Scholar 

  207. Jing Y, Wang L, Xia L, Chen G-Q, Chen Z, Miller WH Jr, et al. Combined effect of all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia cells in vitro and in vivo. Blood. 2001;97:264–9.

    Article  CAS  PubMed  Google Scholar 

  208. Sun Y, Kim SH, Zhou DC, Ding W, Paietta E, Guidez F, et al. Acute promyeloctyic leukemia cell line AP-1060 established as a cytokine-dependent culture from a patient clinically-resistant to all-trans retinoic acid and arsenic trioxide. Leukemia. 2004;18:1258–69.

    Article  CAS  PubMed  Google Scholar 

  209. Lallemand-Breitenbach V, Guillemin MC, Janin A, Daniel MT, Degos L, Kogan SC, et al. Retinoic acid and arsenic synergize to eradicate leukemic cells in a mouse model of acute promyelocytic leukemia. J Exp Med. 1999;189:1043–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Westervelt P, Pollock JL, Oldfather KM, Walter MJ, Ma MK, Williams A, et al. Adaptive immunity cooperates with liposomal all-trans-retinoic acid (ATRA) to facilitate long-term molecular remissions in mice with acute promyelocytic leukemia. Proc Natl Acad Sci U S A. 2002;99(14):9468–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Grimwade D, Enver T. Acute promyelocytic leukemia: where does it stem from? Leukemia. 2004;18(3):375–84.

    Article  CAS  PubMed  Google Scholar 

  212. Zheng X, Seshire A, Ruster B, Bug G, Beissert T, Puccetti E, et al. Arsenic but not all-trans retinoic acid overcomes the aberrant stem cell capacity of PML/RARa-positive leukemic stem cells. Haematologica. 2007;92:323–31.

    Article  CAS  PubMed  Google Scholar 

  213. Bonomi R, Giordano H, del Pilar MM, Bodega E, Gallagher R, et al. Simultaneous PML/RARalpha and AML1/ETO expression with t(15;17) at onset and relapse with only t(8;21) in an acute promyelocytic leukemia patient. Cancer Genet Cytogenet. 2000;123(1):41–3.

    Article  CAS  PubMed  Google Scholar 

  214. Gurrieri C, Nafa K, Merghoub T, Bernardi R, Capodieci P, Biondi A, et al. Mutations of the PML tumor suppressor gene in acute promyelocytic leukemia. Blood. 2004;103(6):2358–62.

    Article  CAS  PubMed  Google Scholar 

  215. Chen Z-X, Xue Y-Q, Zhang R, Tao R-F, Xia X-M, Li C, et al. A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients. Blood. 1991;78:1413–9.

    CAS  PubMed  Google Scholar 

  216. Frankel SR, Eardley A, Heller G, Berman E, Miller WH Jr, Dmitrovsky E, et al. All-trans-retinoic acid for acute promyelocytic leukemia: results of the New York study. Ann Intern Med. 1994;120:278–86.

    Article  CAS  PubMed  Google Scholar 

  217. Warrell RP Jr. Retinoid resistance in acute promyelocytic leukemia: new mechanisms, strategies and implications. Blood. 1993;82:1949–53.

    CAS  PubMed  Google Scholar 

  218. Muindi J, Frankel S, Miller WH Jr, Jakubowski A, Scheinberg D, Young C, et al. Continuous treatment with all-trans-retinoic acid causes a progressive reduction in plasma drug concentrations: implications for relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood. 1992;79:299–303.

    CAS  PubMed  Google Scholar 

  219. Adamson PC, Bailey J, Pluda J, Poplack DG, Bauza S, Murphy RF, et al. Pharmacokinetics of all-trans-retinoic acid administered on an intermittent schedule. J Clin Oncol. 1995;13(4):1238–41.

    Article  CAS  PubMed  Google Scholar 

  220. Miller WH Jr, Jakubowski A, Tong WP, Miller VA, Rigas JR, Benedetti F, et al. 9-cis retinoic acid induces complete remission but does not reverse clinically acquired retinoid resistance in acute promyelocytic leukemia. Blood. 1995;85:3021–7.

    CAS  PubMed  Google Scholar 

  221. Tobita T, Takeshita A, Kitamura K, Ohnishi K, Yanagi M, Hiraoka A, et al. Treatment with a new synthetic retinoid, Am80, of acute promyelocytic leukemia relapsed from complete remission induced by all-trans retinoic acid. Blood. 1997;90:967–73.

    CAS  PubMed  Google Scholar 

  222. Douer D, Estey E, Santillana S, Bennett JM, Lopez-Berestein G, Boehm K, et al. Treatment of newly diagnosed and relapsed acute promyelocytic leukemia with intravenous liposomal all-trans retinoic acid. Blood. 2001;97:73–80.

    Article  CAS  PubMed  Google Scholar 

  223. Cote S, Rosenauer A, Bianchini A, Seiter K, Vandewiele J, Nervi C, et al. Response to histone deacetylase inhibition of novel PML/RARalpha mutant detected in retinoic acid-resistant APL cells. Blood. 2002;100:261–70.

    Article  CAS  Google Scholar 

  224. Gallagher RE, Schachter-Tokarz EL, Zhou D-C, Ding W, Kim SH, Bi W, et al. Relapse of acute promyelocytic leukemia with PML-RARa mutant subclones independent of proximate all-trans retinoic acid selection pressure. Leukemia. 2006;20:556–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Schachter-Tokarz E, Kelaidi C, Cassinat B, Chomienne C, Gardin C, Raffoux E, et al. PML-RARalpha ligand-binding domain deletion mutations associated with reduced disease control and outcome after first relapse of APL. Leukemia. 2010;24:473–6.

    Article  CAS  PubMed  Google Scholar 

  226. Zhou D-C, Kim S, Ding W, Schulz C, Warrell RP Jr, Gallagher RE. Frequent mutations in the ligand binding domain of PML-RARa after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-trans retinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood. 2002;99:1356–63.

    Article  CAS  PubMed  Google Scholar 

  227. Cote S, Zhou D, Bianchini A, Nervi C, Gallagher RE, Miller WH Jr. Altered ligand binding and transcriptional regulation by mutations in the PML/RARa ligand-binding domain arising in retinoic acid-resistant patients with acute promyelocytic leukemia. Blood. 2000;96:3200–8.

    CAS  PubMed  Google Scholar 

  228. Cornic M, Delva L, Guidez F, Balitrand N, Degos L, Chomienne C. Induction of retinoic acid-binding protein in normal and malignant human myeloid cells by retinoic acid in acute promyelocytic leukemia patients. Cancer Res. 1992;52:3329–34.

    CAS  PubMed  Google Scholar 

  229. Zhou D-C, Hallam SJ, Klein RS, Wiernik PH, Tallman MS, Gallagher RE. Constitutive expression of cellular retinoic acid binding protein II and lack of correlation with sensitivity to all-trans retinoic acid in acute promyelocytic leukemia cells. Cancer Res. 1998;58:5770–6.

    CAS  PubMed  Google Scholar 

  230. Napoli J. Retinoic acid biosynthesis and metabolism. FASEB J. 1996;10:993–1001.

    Article  CAS  PubMed  Google Scholar 

  231. Dong D, Ruuska SE, Levinthal DJ, Noy N. Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid. J Biol Chem. 1999;274:23695–8.

    Article  CAS  PubMed  Google Scholar 

  232. Delva L, Bastie J-N, Rochette-Egly C, Kraiba R, Balitrand N, Despauy G, et al. Physical and functional interactions between cellular retinoic acid binding protein II and the retinoic acid-dependent nuclear complex. Mol Cell Biol. 1999;19:7158–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Quere R, Baudet A, Cassinat B, Bertrand G, Marti J, Manchon L, et al. Pharmacogenomic analysis of acute promyelocytic leukemia cells highlights CYP26 cytochrome metabolism in differential all-trans retinoic acid sensitivity. Blood. 2007;109(10):4450–60.

    Article  CAS  PubMed  Google Scholar 

  234. Fanelli M, Minucci S, Gelmetti V, Nervi C, Gambacorti-Passerini C, Pelicci PG. Constitutive degradation of PML/RARa through the proteasome pathway mediates retinoic acid resistance. Blood. 1999;93:1477–81.

    CAS  PubMed  Google Scholar 

  235. McNamara S, Wang H, Hanna N, Miller WH Jr. Topoisomerase IIbeta negatively modulates retinoic acid receptor alpha function: a novel mechanism of retinoic acid resistance. Mol Cell Biol. 2008;28(6):2066–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. McNamara S, Nichol JN, Wang H, Miller WH Jr. Targeting PKC delta-mediated topoisomerase II beta overexpression subverts the differentiation block in a retinoic acid-resistant APL cell line. Leukemia. 2010;24(4):729–39.

    Article  CAS  PubMed  Google Scholar 

  237. Kambhampati S, Li Y, Verma A, Sassano A, Majchrzak B, Deb DK, et al. Activation of protein kinase C delta by all-trans-retinoic acid. J Biol Chem. 2003;278(35):32544–51.

    Article  CAS  PubMed  Google Scholar 

  238. Alsayed Y, Uddin S, Mahmud N, Lekmine F, Kalvakolanu DV, Minucci S, et al. Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to all-trans-retinoic acid. J Biol Chem. 2001;276(6):4012–9.

    Article  CAS  PubMed  Google Scholar 

  239. Ohnuma-Ishikawa K, Morio T, Yamada T, Sugawara Y, Ono M, Nagasawa M, et al. Knockdown of XAB2 enhances all-trans retinoic acid-induced cellular differentiation in all-trans retinoic acid-sensitive and -resistant cancer cells. Cancer Res. 2007;67(3):1019–29.

    Article  CAS  PubMed  Google Scholar 

  240. Zhao HL, Ueki N, Marcelain K, Hayman MJ. The Ski protein can inhibit ligand induced RARalpha and HDAC3 degradation in the retinoic acid signaling pathway. Biochem Biophys Res Commun. 2009;383(1):119–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Neri LM, Borgatti P, Tazzari PL, Bortul R, Cappellini A, Tabellini G, et al. The phosphoinositide 3-kinase/AKT1 pathway involvement in drug and all-trans-retinoic acid resistance of leukemia cells. Mol Cancer Res. 2003;1(3):234–46.

    CAS  PubMed  Google Scholar 

  242. Srinivas H, Xia D, Moore NL, Uray IP, Kim H, Ma L, et al. Akt phosphorylates and suppresses the transactivation of retinoic acid receptor alpha. Biochem J. 2006;395(3):653–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Ghavamzadeh A, Alimoghaddam K, Ghaffari SH, Rostami S, Jahani M, Hosseini R, et al. Treatment of acute promyelocytic leukemia with arsenic trioxide without ATRA and/or chemotherapy. Ann Oncol. 2006;17(1):131–4.

    Article  CAS  PubMed  Google Scholar 

  244. Mathews V, George B, Chendamarai E, Lakshmi KM, Desire S, Balasubramanian P, et al. Single-agent arsenic trioxide in the treatment of newly diagnosed acute promyelocytic leukemia: long-term follow-up data. J Clin Oncol. 2010;28(24):3866–71.

    Article  CAS  PubMed  Google Scholar 

  245. Zhou J, Zhang Y, Li J, Li X, Hou J, Zhao Y, et al. Single-agent arsenic trioxide in the treatment of children with newly diagnosed acute promyelocytic leukemia. Blood. 2010;115(9):1697–702.

    Article  CAS  PubMed  Google Scholar 

  246. Ghaffari SH, Rostami S, Bashash D, Alimoghaddam K, Ghavamzadeh A. Real-time PCR analysis of PML-RAR alpha in newly diagnosed acute promyelocytic leukaemia patients treated with arsenic trioxide as a front-line therapy. Ann Oncol. 2006;17(10):1553–9.

    Article  CAS  PubMed  Google Scholar 

  247. Ghaffari SH, Shayan-Asl N, Jamialahmadi AH, Alimoghaddam K, Ghavamzadeh A. Telomerase activity and telomere length in patients with acute promyelocytic leukemia: indicative of proliferative activity, disease progression, and overall survival. Ann Oncol. 2008;19(11):1927–34.

    Article  CAS  PubMed  Google Scholar 

  248. Thirugnanam R, George B, Chendamarai E, Lakshmi KM, Balasubramanian P, Viswabandya A, et al. Comparison of clinical outcomes of patients with relapsed acute promyelocytic leukemia induced with arsenic trioxide and consolidated with either an autologous stem cell transplant or an arsenic trioxide-based regimen. Biol Blood Marrow Transplant. 2009;15(11):1479–84.

    Article  CAS  PubMed  Google Scholar 

  249. Diaz Z, Mann KK, Marcoux S, Kourelis M, Colombo M, Komarnitsky PB, et al. A novel arsenical has antitumor activity toward As2O3-resistant and MRP1/ABCC1-overexpressing cell lines. Leukemia. 2008;22(10):1853–63.

    Article  CAS  PubMed  Google Scholar 

  250. Tabellini G, Tazzari PL, Bortul R, Evangelisti C, Billi AM, Grafone T, et al. Phosphoinositide 3-kinase/Akt inhibition increases arsenic trioxide-induced apoptosis of acute promyelocytic and T-cell leukaemias. Br J Haematol. 2005;130(5):716–25.

    Article  CAS  PubMed  Google Scholar 

  251. Ramos AM, Fernandez C, Amran D, Sancho P, de Blas E, Aller P. Pharmacologic inhibitors of PI3K/Akt potentiate the apoptotic action of the antileukemic drug arsenic trioxide via glutathione depletion and increased peroxide accumulation in myeloid leukemia cells. Blood. 2005;105(10):4013–20.

    Article  CAS  PubMed  Google Scholar 

  252. Leung J, Pang A, Yuen WH, Kwong YL, Tse EW. Relationship of expression of aquaglyceroporin 9 with arsenic uptake and sensitivity in leukemia cells. Blood. 2007;109(2):740–6.

    Article  CAS  PubMed  Google Scholar 

  253. Dilda PJ, Perrone GG, Philp A, Lock RB, Dawes IW, Hogg PJ. Insight into the selectivity of arsenic trioxide for acute promyelocytic leukemia cells by characterizing Saccharomyces cerevisiae deletion strains that are sensitive or resistant to the metalloid. Int J Biochem Cell Biol. 2008;40:1016–29.

    Article  CAS  PubMed  Google Scholar 

  254. Zhou P, Kalakonda N, Comenzo RL. Changes in gene expression profiles of multiple myeloma cells induced by arsenic trioxide (ATO): possible mechanisms to explain ATO resistance in vivo. Br J Haematol. 2005;128(5):636–44.

    Article  CAS  PubMed  Google Scholar 

  255. Thorsen M, Di Y, Tangemo C, Morillas M, Ahmadpour D, Van der Does C, et al. The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Mol Biol Cell. 2006;17(10):4400–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Maciaszczyk-Dziubinska E, Migdal I, Migocka M, Bocer T, Wysocki R. The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel. FEBS Lett. 2010;584(4):726–32.

    Article  CAS  PubMed  Google Scholar 

  257. Sanz MA, Grimwade D, Tallman MS, Lowenberg B, Fenaux P, Estey EH, et al. Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2009;113(9):1875–91.

    Article  CAS  PubMed  Google Scholar 

  258. Falini B, Flenghi L, Fagioli M, Lo Coco F, Cordone I, Diverio D, et al. Immunocytochemical diagnosis of acute promyelocytic leukemia (M3) with the monoclonal antibody PG-M3 (anti-PML). Blood. 1997;90(10):4046–53.

    CAS  PubMed  Google Scholar 

  259. Paietta E, Goloubeva O, Neuberg D, Bennett JM, Gallagher RE, Racevskis J, et al. A surrogate marker profile for PML-RARa-expressing acute promyelocytic leukemia and the association of immunophenotypic markers with morphologic and molecular subtypes. Cytometry B Clin Cytom. 2004;59:1–9.

    Article  CAS  PubMed  Google Scholar 

  260. Gallagher RE, Li Y-P, Rao S, Paietta E, Andersen J, Etkind P, et al. Characterization of acute promyelocytic leukemia cases with PML-RARa break/fusion sites in PML exon 6: Identification of a subgroup with decreased in vitro responsiveness to all-trans-retinoic acid. Blood. 1995;86:1540–7.

    CAS  PubMed  Google Scholar 

  261. Callens C, Chevret S, Cayuela JM, Cassinat B, Raffoux E, de Botton S, et al. Prognostic implication of FLT3 and Ras gene mutations in patients with acute promyelocytic leukemia (APL): a retrospective study from the European APL Group. Leukemia. 2005;19(7):1153–60.

    Article  CAS  PubMed  Google Scholar 

  262. Gonzalez M, Barragan E, Bolufer P, Chillon C, Colomer D, Borstein R, et al. Pretreatment characteristics and clinical outcome of acute promyelocytic leukaemia patients according to the PML-RARa isoforms: a study of the PETHEMA group. Br J Haematol. 2001;114:99–103.

    Article  CAS  PubMed  Google Scholar 

  263. Kuchenbauer F, Schoch C, Kern W, Hiddemann W, Haferlach T, Schnittger S. Impact of FLT3 mutations and promyelocytic leukaemia-breakpoint on clinical characteristics and prognosis in acute promyelocytic leukaemia. Br J Haematol. 2005;130(2):196–202.

    Article  CAS  PubMed  Google Scholar 

  264. Tallman MS, Kim HT, Montesinos P, Appelbaum FR, de la Serna J, Bennett JM, et al. Does microgranular variant morphology of acute promyelocytic leukemia independently predict for a less favorable outcome compared with classical M3 APL? A joint study of the North American Intergroup and the PETHEMA Group. Blood. 2010;116(25):5650–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Fukutani H, Naoe T, Ohno R, Yoshida H, Miyawaki S, Shimazaki C, et al. Prognostic significance of the RT-PCR assay of PML-RARA transcripts in acute promyelocytic leukemia. Leukemia. 1995;9:588–93.

    CAS  PubMed  Google Scholar 

  266. Mandelli F, Diverio D, Avvisati G, Luciano A, Barbui T, Bernasconi C, et al. Molecular remission in PML/RARa-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Blood. 1997;90:1014–21.

    CAS  PubMed  Google Scholar 

  267. Burnett AK, Grimwade D, Solomon E, Wheatley K, Goldstone AH. Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the randomized MRC trial. Blood. 1999;93:4131–43.

    CAS  PubMed  Google Scholar 

  268. Stock W, Moser B, Powell BL, Appelbaum FR, Tallman MS, Larson RA, et al. Prognostic significance of initial clincial and molecular genetic features of actue promeylocytic leukemia (APL): results from the North American Intergroup Trial C9710 (Abstract #7016). J Clin Oncol. 2007;25(Suppl. 18):361s.

    Google Scholar 

  269. Chillon MC, Santamaria C, Garcia-Sanz R, Balanzategui A, Maria Eugenia S, Alcoceba M, et al. Long FLT3 internal tandem duplications and reduced PML-RARalpha expression at diagnosis characterize a high-risk subgroup of acute promyelocytic leukemia patients. Haematologica. 2010;95(5):745–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Cervera J, Montesinos P, Hernandez-Rivas JM, Calasanz MJ, Aventin A, Ferro MT, et al. Additional chromosome abnormalities in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Haematologica. 2010;95(3):424–31.

    Article  CAS  PubMed  Google Scholar 

  271. Schnittger S, Weisser M, Schoch C, Hiddemann W, Haferlach T, Kern W. New score predicting for prognosis in PML-RARA-, AML1-ETO-, or CBFB-MYH11-positive acute myeloid leukemia based on quantification of fusion transcripts. Blood. 2003;102:2746–55.

    Article  CAS  PubMed  Google Scholar 

  272. Gallagher RE, Yeap BY, Bi W, Livak KJ, Beaubier N, Rao S, et al. Quantitative real-time RT-PCR analysis of PML-RARa mRNA in adult acute promyelocytic leukemia: assessment of prognostic significance in adult patients from intergroup protocol 0129. Blood. 2003;101:2521–8.

    Article  CAS  PubMed  Google Scholar 

  273. Weisberg E, Sattler M, Ray A, Griffin JD. Drug resistance in mutant FLT3-positive AML. Oncogene. 2010;29(37):5120–34.

    Article  CAS  PubMed  Google Scholar 

  274. Beitinjaneh A, Jang S, Roukoz H, Majhail NS. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations in acute promyelocytic leukemia: a systematic review. Leuk Res. 2010;34(7):831–6.

    Article  CAS  PubMed  Google Scholar 

  275. Noguera N, Breccia M, Divona M, Diverio D, Costa V, Avvisati G, et al. Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia. 2002;16:2185–9.

    Article  CAS  PubMed  Google Scholar 

  276. Au WY, Fung A, Chim CS, Lie AK, Liang R, Ma ES, et al. FLT-3 aberrations in acute promyelocytic leukaemia: clinicopathological associations and prognostic impact. Br J Haematol. 2004;125(4):463–9.

    Article  CAS  PubMed  Google Scholar 

  277. Gale RE, Hills R, Pizzey AR, Kottaridis PD, Swirsky D, Gilkes AF, et al. Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood. 2005;106(12):3768–76.

    Article  CAS  PubMed  Google Scholar 

  278. Stock W, Moser B, Najib K, Powell B, Gulati K, Holowka N, et al. High incidence of FLT3 mutations in adults with acute promyelocytic leukemia (APL): correlation with diagnostic features and treatment outcome (C-9710) [abstract]. J Clin Oncol. 2008;26(Suppl. 15):7002.

    Article  Google Scholar 

  279. Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD, et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a cancer and leukemia group B study. Cancer Res. 2001;61(19):7233–9.

    CAS  PubMed  Google Scholar 

  280. Santamaria C, Chillon MC, Garcia-Sanz R, Balanzategui A, Sarasquete ME, Alcoceba M, et al. The relevance of preferentially expressed antigen of melanoma (PRAME) as a marker of disease activity and prognosis in acute promyelocytic leukemia. Haematologica. 2008;93(12):1797–805.

    Article  PubMed  Google Scholar 

  281. Hu J, Liu YF, Wu CF, Xu F, Shen ZX, Zhu YM, et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci U S A. 2009;106(9):3342–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Powell BL, Moser B, Stock W, Gallagher RE, Willman CL, Stone RM, et al. Arsenic trioxide improves event-free and over-all survival for adults with acute promyelocytic leukemia: North American Leukemia Intergroup Study C9710. Blood. 2010;116:3751–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Gore SD, Gojo I, Sekeres MA, Morris L, Devetten MP, Jamieson K, et al. A single cycle of arsenic trioxide-based consolidation chemotherapy spares anthracycline exposure in the primary management of acute promyelocytic leukemia. J Clin Oncol. 2010;28:1047–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. van Dongen JJM, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G, et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Leukemia. 1999;13:1901–28.

    Article  PubMed  CAS  Google Scholar 

  285. Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 1995;4(6):357–62.

    Article  CAS  PubMed  Google Scholar 

  286. Gabert J, Beillard E, van der Velden V, Bi W, Grimwade D, Pallisgaard N. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction (RQ-PCR) of fusion gene transcripts for residual disease detection in leukemia—A Europe Against Cancer Program. Leukemia. 2003;17:2318–57.

    Article  CAS  PubMed  Google Scholar 

  287. Santamaria C, Chillon MC, Fernandez C, Martin-Jimenenz P, Balanzategui A, Sanz RG, et al. Using quantification of the PML-RARa transcript to stratify the risk of relapse in patients with acute promyelocytic leukemia. Haematologica. 2007;92:315–22.

    Article  CAS  PubMed  Google Scholar 

  288. Gallagher R, Schachter-Tokarz E, Zhou D-C, Liao K, Jones D, Estey E. MRD monitoring in acute promyelocytic leukemia: unresolved issues in 2005. Hematol Rep. 2005;1:76–9.

    Google Scholar 

  289. Diverio D, Rossi V, Avvisati G, De Santis S, Pistilli A, Pane F, et al. Early detection of relapse by prospective reverse transcriptase-polymerase chain reaction analysis of the PML/RARa fusion gene in patient with acute promyelocytic leukemia enrolled in the GIMEMA-AIEOP multicenter “AIDA” trial. Blood. 1998;92:784–9.

    CAS  PubMed  Google Scholar 

  290. Grimwade D, Lo CF. Acute promyelocytic leukemia: a model for the role of molecular diagnosis and residual disease monitoring in directing treatment approach in acute myeloid leukemia. Leukemia. 2002;16:1959–73.

    Article  CAS  PubMed  Google Scholar 

  291. LoCoco F, Diverio D, Avvisati G, Petti MC, Meloni G, Pogliani EM, et al. Therapy of molecular relapse in acute promyelocytic leukemia. Blood. 1999;94:2225–9.

    CAS  Google Scholar 

  292. Esteve J, Escoda L, Martin G, Rubio V, Diaz-Mediavilla J, Gonzalez M, et al. Outcome of patients with acute promyelocytic leukemia failing to front-line treatment with all-trans retinoic acid and anthracycline-based chemotherapy (PETHEMA protocols LPA96 and LPA99): benefit of an early intervention. Leukemia. 2007;21(3):446–52.

    Article  CAS  PubMed  Google Scholar 

  293. Cassinat B, de Botton S, Kelaidi C, Ades L, Zassadowski F, Guillemot I, et al. When can real-time quantitative RT-PCR effectively define molecular relapse in acute promyelocytic leukemia patients? (Results of the French Belgian Swiss APL Group). Leuk Res. 2009;33(9):1178.

    Article  CAS  PubMed  Google Scholar 

  294. Grimwade D, Jovanovic JV, Hills RK, Nugent EA, Patel Y, Flora R, et al. Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol. 2009;27(22):3650–8.

    Article  CAS  PubMed  Google Scholar 

  295. Gallagher RE. Real-time consensus on relapse risk in acute promyelocytic leukemia. Leuk Res. 2009;33(9):1170.

    Article  PubMed  PubMed Central  Google Scholar 

  296. Ommen HB, Schnittger S, Jovanovic JV, Ommen IB, Hasle H, Ostergaard M, et al. Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias. Blood. 2010;115(2):198–205.

    Article  CAS  PubMed  Google Scholar 

  297. Vickers M, Jackson G, Taylor P. The incidence of cute promyelocytic leukemia appears constant over most of a human lifespan, implying only one rate limiting mutation. Leukemia. 2000;14:72.

    Google Scholar 

  298. Carter M, Kalwinsky DK, Dahl GV, et al. Childhood acute promyelocytic leukemia: a rare variant of nonlymphoid leukemia with distinctive clinical and biologic features. Leukemia. 1989;3:298.

    CAS  PubMed  Google Scholar 

  299. Biondi A, Rovelli A, Cantù-Rajnoldi A, et al. Acute promyelocytic leukemia in children: Experience of the Italian Pediatric Hematology and Oncology Group (AIEOP). Leukemia. 1994;8(Suppl 2):S66.

    PubMed  Google Scholar 

  300. Maule MM, Damma E, Mosso ML, et al. High incidence of acute promyelocytic leukemia in children in northwest Italy, 1980–2003: a report from the childhood cancer registry of Piedmont. Leukemia. 2008;22:439–41.

    Article  CAS  PubMed  Google Scholar 

  301. Biondi A, Rovelli A, Cantŭ-Raynoldi A, et al. Acute promyelocytic leukemia in children: experience of the Italian pediatric hematology and oncology group (AIEOP). Leukemia. 1994;8:1264–8.

    CAS  PubMed  Google Scholar 

  302. Malta-Corea A, Pacheco Espinoza C, Cantù-Rajnoldi A, et al. Childhood acute promyelocytic leukemia in Nicaragua. Ann Oncol. 1993;4:892.

    Article  CAS  PubMed  Google Scholar 

  303. Douer D, Preston-Martin S, Chang E, et al. High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia. Blood. 1996;87:308.

    CAS  PubMed  Google Scholar 

  304. Hernández P, Milanés MT, Svarch E, et al. High relative proportion of acute promyelocytic leukemia in children: experience of a multicenter study in Cuba. Leuk Res. 2000;24:739–40.

    Article  PubMed  Google Scholar 

  305. Matasar MJ, Ritchie EK, Consedine N, et al. Incidence rates of acute promyelocytic leukemia among Hispanics, blacks, Asians and non-Hispanic whites in the United States. Eur J Cancer Prev. 2006;15:367–70.

    Article  PubMed  Google Scholar 

  306. Wiernik PH, Andersen JW. Unpublished observations; 1994.

    Google Scholar 

  307. Mele A, Stazi MA, Pulsoni A, et al. Epidemiology of acute promyelocytic leukemia. Haematologica. 1995;80:405.

    CAS  PubMed  Google Scholar 

  308. Pulsoni A, Stazi A, Cotichini R, et al. Acute promyelocytic leukemia: epidemiology and risk factors. A report of the GIMEMA Italian archive of adult acute leukaemia. GIMEMA Cooperative Group. Eur J Haematol. 1998;61:327.

    Article  CAS  PubMed  Google Scholar 

  309. Estey E, Thall P, Kantarjian H, et al. Association between increased body mass index and a diagnosis of acute promyelocytic leukemia in patients with acute myeloid leukemia. Leukemia. 1997;12:1503.

    Google Scholar 

  310. Jeddi R, Ghédira H, Mnif S, et al. High body mass index is an independent predictor of differentiation syndrome in patients with acute promyelocytic leukemia. Leuk Res. 2010;34:545–7.

    Article  PubMed  Google Scholar 

  311. Yin CC, Glassman AP, Lin P, et al. Morphologic, cytogenetic and molecular abnormalities in therapy-related acute promyelocytic leukemia. Am J Clin Pathol. 2005;123:840–8.

    Article  PubMed  Google Scholar 

  312. Beaumont M, Sanz M, Carli PM, et al. Therapy-related acute promyelocytic leukemia. J Clin Oncol. 2003;21:2123–37.

    Article  CAS  PubMed  Google Scholar 

  313. Au WY, Ma SK, Chung LP, et al. Two cases of therapy-related acute promyelocytic leukemia (t-APL) after mantle cell lymphoma and gestational trophoblastic disease. Ann Hematol. 2002;81:659–71.

    Article  CAS  PubMed  Google Scholar 

  314. Bosca I, Pascual AM, Cassanova B, et al. Four new cases of therapy-related acute promyelocytic leukemia after mitoxantrone. Neurology. 2008;71:457–8.

    Article  CAS  PubMed  Google Scholar 

  315. Ramkumar B, Chadra MK, Barcos M, et al. Acute promyelocytic leukemia after mitoxantrone therapy for multiple sclerosis. Cancer Genet Cytogenet. 2008;182:126–9.

    Article  CAS  PubMed  Google Scholar 

  316. Matsuo K, Kiura K, Tahata M, et al. Clustered incidence of acute promyelocytic leukemia during gefitinib treatment of non-small cell lung cancer: experience at a single institution. Am J Hematol. 2006;81:349–54.

    Article  CAS  PubMed  Google Scholar 

  317. Daly PA, Schiffer CA, Wiernik PH. Acute promyelocytic leukemia—Clinical management of 15 patients. Am J Hematol. 1980;8:347.

    Article  CAS  PubMed  Google Scholar 

  318. Biondi A, Luciano A, Bassan R, et al. CD2 expression in acute promyelocytic leukemia is associated with microgranular morphology (FAB M3v) but not with any PML gene breakpoint. Leukemia. 1995;9:1461.

    CAS  PubMed  Google Scholar 

  319. Hazani A, Weidenfeld Y, Tatarsky I, Bental E. Acute promyelocytic leukemia presenting as sudden blindness and sinus vein thrombosis. Am J Hematol. 1988;28:56.

    Article  CAS  PubMed  Google Scholar 

  320. Jetha N. Promyelocytic leukemia with multiorgan infarctions and large vessel thrombosis. Arch Pathol Lab Med. 1981;105:683.

    CAS  PubMed  Google Scholar 

  321. Hoyle CF, Swirsky DM, Freedman L, Hayhoe FGJ. Beneficial effect of heparin in the management of patients with APL. Br J Haematol. 1988;68:283.

    Article  CAS  PubMed  Google Scholar 

  322. Avvisati G, LoCoco F, Mandelli F. Acute promyelocytic leukemia: clinical and morphologic features and prognostic factors. Semin Hematol. 2001;38:4–12.

    Article  CAS  PubMed  Google Scholar 

  323. Lavau C, Dejean A. The t(15;17) translocation in acute promyelocytic leukemia. Leukemia. 1994;8(Suppl 2):S9.

    Google Scholar 

  324. Sessarego M, Fugazza G, Balleari E, et al. High frequency of trisomy 8 in acute promyelocytic leukemia: a fluorescence in situ hybridization study. Cancer Genet Cytogenet. 1997;97:161.

    Article  CAS  PubMed  Google Scholar 

  325. De Botton S, Chevret S, Sanz M, et al. Additional chromosomal abnormalities in patients with acute promyelocytic leukaemia (APL) do not confer poor prognosis: Results of APL 93 trial. Br J Haematol. 2000;111:801.

    PubMed  Google Scholar 

  326. Hernandez JM, Martin G, Gutierrez NC, et al. Additional cytogenetic changes do not influence the outcome of patients with newly diagnosed acute promyelocytic leukemia treated with ATRA plus anthracyclin based protocol. A report of the Spanish group PETHEMA. Haematologica. 2001;86:807.

    CAS  PubMed  Google Scholar 

  327. Schoch C, Haase D, Haferlach T, et al. Incidence and implication of additional chromosome aberrations in acute promyelocytic leukaemia with translocation t(15;17)(q22;q21): a report on 50 patients. Br J Haematol. 1996;94:493.

    Article  CAS  PubMed  Google Scholar 

  328. Slack JL, Arthur DC, Lawrence D, et al. Secondary cytogenetic changes in acute promyelocytic leukemia—prognostic importance in patients treated with chemotherapy alone and association with the intron 3 breakpoint of the PML gene: A Cancer and Leukemia Group B study. J Clin Oncol. 1997;15:1786.

    Article  CAS  PubMed  Google Scholar 

  329. Pantic M, Novak A, Marislavljevic D, et al. Additional chromosome aberrations in acute promyelocytic leukemia: characteristics and prognostic influence. Med Oncol. 2000;17:307.

    Article  CAS  PubMed  Google Scholar 

  330. Wiernik PH, Sun Z, Gundacker H, et al. Prognostic implications of additional chromosome abnormalities among patients with de novo acute promyelocytic leukemia with t(15;17). Med Oncol. 2012;29:2095–101.

    Article  PubMed  PubMed Central  Google Scholar 

  331. Xu L, Zhao WL, Xiong SM, et al. Molecular cytogenetic characterization and clinical relevance of additional complex and/or variant chromosome abnormalities in acute promyelocytic leukemia. Leukemia. 2001;15:1359–68.

    Article  CAS  PubMed  Google Scholar 

  332. Batzios C, Hayes LA, He SZ, et al. Secondary clonal cytogenetic abnormalities following successful treatment of acute promyelocytic leukemia. Am J Hematol. 2010;133:484–90.

    Google Scholar 

  333. Dimov ND, Medeiros LJ, Ravandi F, Bueso Ramos CE. Acute promyelocytic leukemia at time of relapse commonly demonstrates cytogenetic evidence of clonal evolution and variability in blast immunophenotypic features. Am J Clin Pathol. 2010;133:454–90.

    Article  Google Scholar 

  334. Jansen JH, de Ridder MC, Geertsma WM, et al. Complete remission of t(11;17) positive acute promyelocytic leukemia induced by all-trans retinoic acid and granulocyte colony-stimulating factor. Blood. 1999;94:39.

    CAS  PubMed  Google Scholar 

  335. Krause JR, Stolc V, Kaplan SS, Penchansky L. Microgranular promyelocytic leukemia: a multiparameter examination. Am J Hematol. 1989;30:158.

    Article  CAS  PubMed  Google Scholar 

  336. Murray CK, Estey E, Paietta E, et al. CD56 expression in acute promyelocytic leukemia: a possible indicator of poor treatment outcome? J Clin Oncol. 1999;17:293.

    Article  CAS  PubMed  Google Scholar 

  337. Castoldi GL, Liso V, Specchia G, Tomasi P. Acute promyelocytic leukemia: morphological aspects. Leukemia. 1994;8(Suppl 2):S27.

    PubMed  Google Scholar 

  338. Bennett JM, Catovsky D, Daniel MT, et al. A variant form of hypergranular promyelocytic leukemia (M3). French-American-British (FAB) Co-operative Group. Br J Haematol. 1980;44:169.

    Article  CAS  PubMed  Google Scholar 

  339. Rovelli A, Biondi A, Cantù Rajnoldi A, et al. Microgranular variant of acute promyelocytic leukemia in children. J Clin Oncol. 1992;10:1413.

    Article  CAS  PubMed  Google Scholar 

  340. Davey FR, Davis RB, MacCallum JM, et al. Morphologic and cytochemical characteristics of acute promyelocytic leukemia. Am J Hematol. 1989;30:221.

    Article  CAS  PubMed  Google Scholar 

  341. Golomb HM, Rowley JD, Vardiman JW, et al. “Microgranular” acute promyelocytic leukemia: a distinct clinical, ultrastructural, and cytogenetic entity. Blood. 1980;55:253.

    CAS  PubMed  Google Scholar 

  342. McKenna RW, Parkin J, Bloomfield CD, et al. Acute promyelocytic leukemia: a study of 39 cases with identification of a hyperbasophilic microgranular variant. Br J Haematol. 1982;50:201.

    Article  CAS  PubMed  Google Scholar 

  343. Invernizzi R, Iannone AM, Bernuzzi S, et al. Acute promyelocytic leukemia: morphological and clinical features. Haematologica. 1993;78:156.

    CAS  PubMed  Google Scholar 

  344. Tallman MS, Hakimian D, Snower D, et al. Basophilic differentiation in acute promyelocytic leukemia. Leukemia. 1993;7:521.

    CAS  PubMed  Google Scholar 

  345. Erber WN, Asbahr H, Rule SA, Scott CS. Unique immunophenotype of acute promyelocytic leukemia as defined by CD9 and CD68 antibodies. Br J Haematol. 1994;88:101.

    Article  CAS  PubMed  Google Scholar 

  346. Koike T, Tatewaki W, Aoki A, et al. Brief report: severe symptoms of hyperhistaminemia after the treatment of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med. 1992;327:385.

    Article  CAS  PubMed  Google Scholar 

  347. Gilbert RD, Karabus CD, Mills E. Acute promyelocytic leukemia: a childhood cluster. Cancer. 1987;59:933.

    Article  CAS  PubMed  Google Scholar 

  348. Williams CKO, Folani AO, Saditan AAO, et al. Childhood acute leukemia in a tropical population. Br J Cancer. 1982;42:89.

    Article  Google Scholar 

  349. Scott RM, Mayer RJ. The unique aspects of acute promyelocytic leukemia. J Clin Oncol. 1990;8:1913.

    Article  Google Scholar 

  350. Masamoto Y, Nannya Y, Arai S, et al. Evidence for basophilic differentiation of acute promyelocytic leukemia cells during arsenic trioxide therapy. Br J Hematol. 2009;144:798–9.

    Article  Google Scholar 

  351. Das Gupta A, Sapre RS, Shah AS, et al. Cytochemical and immunophenotypic heterogeneity in acute promyelocytic leukemia. Acta Haematol. 1989;81:5.

    Article  CAS  PubMed  Google Scholar 

  352. Scott CS, Patel D, Drexler HG, et al. Immunophenotypic and enzymatic studies do not support the concept of mixed monocytic-granulocytic differentiation in acute promyelocytic leukemia (M3): a study of 44 cases. Br J Haematol. 1989;71:50.

    Article  Google Scholar 

  353. Drexler HG. Classification of acute myeloid leukemia: a comparison of FAB and immunophenotyping. Leukemia. 1987;1:697.

    CAS  PubMed  Google Scholar 

  354. Sanz MA, Jarque I, Martín G, et al. Acute promyelocytic leukemia. Therapy results and prognostic factors. Cancer. 1988;61:7.

    Article  CAS  PubMed  Google Scholar 

  355. Breccia M, Carmosino I, Diverio D, et al. Early detection of meningeal localization in acute promyelocytic leukemia patients with high presenting leucocyte count. Br J Haematol. 2003;120:266–70.

    Article  PubMed  Google Scholar 

  356. Nagai S, Nammya Y, Arai S, et al. Molecular and cytogenetic monitoring and preemptive therapy for central nervous system relapse of acute promyelocytic leukemia. Haematologica. 2010;95:169–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  357. Kaspers G, Gibson B, Grimwade D, et al. Central nervous system involvement in relapsed acute promyelocytic leukemia. Pediatr Blood Cancer. 2009;53:235–6.

    Article  PubMed  Google Scholar 

  358. Montesinos P, Díaz-Mediavilla J, Debén G, et al. Central nervous involvement at first relapse in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monotherapy without intrathecal prophyllaxis. Haematologica. 2009;94:1242–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  359. Ohanian M, Rozovski U, Ravandi F, et al. Very high levels of lactate dehydrogenase at diagnosis predict central nervous system relapse in acute promyelocytic leukaemia. Br J Haematol. 2015;169:595–7.

    Article  CAS  PubMed  Google Scholar 

  360. Akoz AG, Dagdas S, Oget G, et al. Isolated central nervous system relapse during cytologic and molecular hematologic remission in two patients with acute promyelocytic leukemia. Hematology. 2007;12:419–22.

    Article  PubMed  Google Scholar 

  361. Mishra J, Gupta M. Cerebrospinal fluid involvement in acute promyelocytic leukaemia at presentation. BMJ Case Rep. 2015;9:2015.

    Google Scholar 

  362. He Z, Tao S, Deng Y, et al. Extramedullary relapse in lumbar spine of patient with acute promyelocytic leukemia after remission for 16 years: a case report and literature review. Int J Clin Exp Med. 2015;8:22430–4.

    PubMed  PubMed Central  Google Scholar 

  363. Vega-Ruíz A, Faderl S, Estrov Z, et al. Incidence of extrameullary disease in patients with acute promyelocytic leukemia: a single-institution experience. Int J Hematol. 2009;89:489–96.

    Article  PubMed  PubMed Central  Google Scholar 

  364. Ko B-S, Tang J-L, Chen Y-C, et al. Extramedullary relapse after all-trans retinoic acid treatment in acute promyelocytic leukemia—the occurrence of retinoic acid syndrome is a risk factor. Leukemia. 1999;13:1406.

    Article  CAS  PubMed  Google Scholar 

  365. de Botton S, Sanz MA, Chevret S, et al. Extramedullary relapse in acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Leukemia. 2006;20:35–41.

    Article  PubMed  CAS  Google Scholar 

  366. De Renzo A, Santoro LFE, Notaro R, et al. Acute promyelocytic leukemia after treatment for non-Hodgkin’s lymphoma with drugs targeting topoisomerase II. Am J Hematol. 1999;60:300.

    Article  PubMed  Google Scholar 

  367. Kantarjian HM, Keating MJ, Walters RS, et al. The association of specific “favorable” cytogenetic abnormalities with secondary leukemia. Cancer. 1986;58:924.

    Article  CAS  PubMed  Google Scholar 

  368. Detourmignies L, Castaigne S, Stoppa AM, et al. Therapy-related acute promyelocytic leukemia: a report of 16 cases. J Clin Oncol. 1992;10:1430.

    Article  CAS  PubMed  Google Scholar 

  369. Hall MJ, Li L, Wiernik PH, Olopade OI. BRCA2 mutation and the risk of hematologic malignancy. Leuk Lymphoma. 2006;47:765–7.

    PubMed  Google Scholar 

  370. Wei S, Kozono S, Kats L, et al. Active Pin1 is a key target of all-trans retinoic acid in acute promyelocytic leukemia and breast cancer. Nat Med. 2015;21:457–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Rashidi A, Fisher SI. Therapy-related acute promyelocytic leukemia: a systematic review. Med Oncol. 2013;30:625.

    Article  PubMed  CAS  Google Scholar 

  372. Braun T, Cereja S, Chevret S, et al. Evolving characteristics and outcome of secondary acute promyelocytic leukemia (APL): a prospective analysis by the French-Belgian-Swiss APL Group. Cancer. 2015;121:2393–9.

    Article  CAS  PubMed  Google Scholar 

  373. Castaigne S, Berger R, Jolly V, et al. Promyelocytic blast crisis of chronic myelocytic leukemia with both t(9;22) and t(15;17) in M3 cells. Cancer. 1984;54:2409.

    Article  CAS  PubMed  Google Scholar 

  374. Rosenthal NS, Knapp D, Farhi DC. Promyelocytic blast crisis of chronic myelogenous leukemia. A rare subtype associated with disseminated intravascular coagulation. Am J Clin Pathol. 1995;103:185.

    Article  CAS  PubMed  Google Scholar 

  375. Misawa S, Lee E, Schiffer CA, et al. Association of the translocation (15;17) with malignant proliferation of promyelocytes in acute leukemia and chronic myelogenous leukemia at blast crisis. Blood. 1986;67:270.

    CAS  PubMed  Google Scholar 

  376. Hogge DE, Misawa S, Schiffer CA, Testa JR. Promyelocytic blast crisis in chronic granulocytic leukemia with 15;17 translocation. Leuk Res. 1984;6:1019.

    Article  Google Scholar 

  377. Wiernik PH, Dutcher JP, Paietta E, et al. Treatment of promyelocytic blast crisis of chronic myelogenous leukemia with all transretinoic acid. Leukemia. 1991;5:504–9.

    CAS  PubMed  Google Scholar 

  378. Hatzis T, Standen GR, Howell RT, et al. Acute promyelocytic leukaemia (M3): Relapse with acute myeloblastic leukaemia (M2) and dic(5;17)(q11;p11). Am J Hematol. 1995;48:40.

    Article  CAS  PubMed  Google Scholar 

  379. Bseiso AN, Kantarjian H, Estey E. Myelodysplastic syndrome following successful therapy of acute promyelocytic leukemia. Leukemia. 1977;11:168.

    Article  Google Scholar 

  380. Felice MS, Rossi J, Gallego M, et al. Acute trilineage leukemia with monosomy of chromosome 7 following an acute promyelocytic leukemia. Leuk Lymphoma. 1999;34:409.

    Article  CAS  PubMed  Google Scholar 

  381. Zompi S, Legrand O, Bouscany D, et al. Therapy-related acute myeloid leukemia after successful therapy for acute promyelocytic leukaemia with t(15;17): a report of two cases and a review of the literature. Br J Haematol. 2000;110:610.

    Article  CAS  PubMed  Google Scholar 

  382. Park TS, Choi JR, Yoon SH, et al. Acute promyelocytic leukemia relapsing as secondary acute myelogenous leukemia with translocation t(3;21)(q26;q22) and RUNX1-MDS1-EV11 fision transcript. Cancer Genet Cytogenet. 2008;187:61–73.

    Article  CAS  PubMed  Google Scholar 

  383. Vitale C, Jabbour E, Lu X, et al. Acute promyelocytic leukemia presented as a relapse of acute myeloid leukemia. Am J Hematol. 2016;91:e274–6.

    Article  PubMed  Google Scholar 

  384. Eghtedar A, Rodriguez I, Kantarjian H, et al. Incidence of secondary neoplasms in patients with acute promyelocytic leukemia treated with all-trans retinoic acid plus chemotherapy or with all-trans retinoic acid plus arsenic trioxide. Leuk Lymphoma. 2015;56:1342–5.

    Article  CAS  PubMed  Google Scholar 

  385. Wang HC, Liu YC, Tsai YF, et al. Donor cell-derived acute promyelocytic leukemia after allogeneic hematopoietic stem cell transplant. Ann Hematol. 2015;94:887–8.

    Article  PubMed  Google Scholar 

  386. Testa U, Lo-Coco F. Prognostic factors in acute promyelocytic leukemia: strategies to define high-risk groups. Ann Hematol. 2016;95:673–80.

    Article  CAS  PubMed  Google Scholar 

  387. Lengfelder E, Hanfstein B, Haferlach C, et al. Outcome of elderly patients with acute promyelocytic leukemia: results of the German Acute Myeloid Leukemia Cooperative Group. Ann Hematol. 2013;92:41–52.

    Article  PubMed  Google Scholar 

  388. Daver N, Kantarjian H, Marcucci G, et al. Clinical characteristics and outcomes in patients with acute promyelocytic leukaemia and hyperleucocytosis. Br J Haematol. 2015;165:646–53.

    Article  CAS  Google Scholar 

  389. Lucena-ALraujo AR, Kim HT, Jacomo RH, et al. Internal tandem duplication of the FLT3 gene confers poor overall survival in patients with acute promyelocytic leukemia treated with all-trans retinoic and anthracycline-based chemotherapy: an International Consortium on Acute Promyelocytic Leukemia study. Ann Hematol. 2014;93:2001–10.

    Article  CAS  Google Scholar 

  390. Cicconi L, Divona M, Ciardi C, et al. PML-RARα kinetics and impact of FLT3-ITD mutations in newly diagnosed acute promyelocytic leukemia treated with ATRA and ATO or ATRA and chemotherapy. Leukemia. 2016;30:1987–92.

    Article  CAS  PubMed  Google Scholar 

  391. Albano F, Zagaria A, Anelli L, et al. Absolute quantification of the pretreatment PML-RARA transcript defines the relapse risk in acute promyelocytic leukemia. Oncotarget. 2015;6:13269–77.

    Article  PubMed  PubMed Central  Google Scholar 

  392. Lucena-ALraujo AR, Kim HT, Jacomo RH, et al. Prognostic impact of KMT2E transcript levels on outcome of patients with acute promyelocytic leukaemia treated with all-trans retinoic acid and anthracycline-based chemotherapy: and International Consortium on Acute Promyelocyti Leukaemia study. Br J Haematol. 2014;166:540–9.

    Article  CAS  Google Scholar 

  393. Hecht A, Nolte F, Nowak D, et al. Prognostic importance of expression of the Wilms’ tumor 1 gene in newly diagnosed acute promyelocytic leukemia. Leuk Lymphoma. 2015;56:2289–95.

    Article  CAS  PubMed  Google Scholar 

  394. Lucena-ALraujo AR, Kim HT, Thomé C, et al. High ΔNp73/Tap73 ratio is associated with poor prognosis in acute promyelocytic leukemia. Blood. 2015;126:2302–6.

    Article  CAS  Google Scholar 

  395. Gao NA, Yu WZ, Wang XX, et al. Significance of ETV6 rearrangement in acute promyelocytic leukemia with t(15;17) promyelocytic leukemia/retinoic acid receptor alpha. Oncol Lett. 2016;11:3953–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Lou Y, Ma Y, Suo S, et al. Prognostic factors of patients with newly diagnosed acute promyelocytic leukemia treated with arsenic trioxide-based frontline therapy. Leuk Res. 2015;39:938–44.

    Article  CAS  PubMed  Google Scholar 

  397. Seftel MD, Barnett MJ, Couban S, et al. A Canadian consensus on the management of newly diagnosed and relapsed acute promyelocytic leukemia in adults. Curr Oncol. 2014;21:234–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Micol JB, Raffoux E, Boissel N, et al. Management and treatment results in patients with acute promyelocytic leukaemia (APL) not enrolled in clinical trials. Eur J Cancer. 2014;50:1159–68.

    Article  PubMed  Google Scholar 

  399. Paulson K, Serebrin A, Lambert P, et al. Acute promyelocytic leukaemia is characterized by stable incidence and improved survival that is restricted to patients in leukaemia referral centres: a pan-Canadian epidemiological study. Br J Haematol. 2014;166:660–6.

    Article  PubMed  Google Scholar 

  400. Abrahão R, Ribeiro RC, Medeiros BC, et al. Disparities in early death and survival in children, adolescents and young adults with acute promyelocytic leukemia in California. Cancer. 2015;121:3960–7.

    Article  CAS  Google Scholar 

  401. Alhuraiji A, Jain N. Immunofluorescence staining with an antipromyelocytic leukemia antibody for a rapid diagnosis of acute promyelocytic leukemia. Hematol Oncol Stem Cell Ther. 2017;10:33–34.

    Google Scholar 

  402. Di Bona E, Avvisati G, Castaman G, et al. Early haemorrhagic morbidity and mortality during remission induction with or without all-trans retinoic acid in acute promyelocytic leukaemia. Br J Haematol. 2000;108:689.

    Article  PubMed  Google Scholar 

  403. Visani G, Gugliotta L, Tosi P, et al. All-trans retinoic acid significantly reduces the incidence of early hemorrhagic death during induction therapy of acute promyelocytic leukemia. Eur J Haematol. 2000;64:139.

    Article  CAS  PubMed  Google Scholar 

  404. Lehmann-Che J, Bally C, de Thé H. Resistance to therapy in acute promyelocytic leukemia. N Engl J Med. 2014;371:1170–2.

    Article  PubMed  Google Scholar 

  405. El Hajj H, Dassouki Z, Berthier C, et al. Retinoic acid and arsenic trioxide trigger degradation of mutated NPM1, resulting in apoptosis of AML cells. Blood. 2015;125:3447–54.

    Article  PubMed  CAS  Google Scholar 

  406. Yates JW, Wallace J Jr, Ellison RR, Holland JF. Cytosine arabinoside (NSC-63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia. Cancer Chemother Rep. 1973;57:485.

    CAS  PubMed  Google Scholar 

  407. Estey E, Thall PF, Pierce S, et al. Treatment of newly diagnosed acute promyelocytic leukemia without cytarabine. J Clin Oncol. 1997;15:483.

    Article  CAS  PubMed  Google Scholar 

  408. Sanz MA, Guillermo M, Rayon C, et al. A modified AIDA protocol with anthracycline-based consolidation results in high antileukemic efficacy and reduced toxicity in newly diagnosed PML/RARα-positive acute promyelocytic leukemia. Blood. 1999;94:3015.

    CAS  PubMed  Google Scholar 

  409. Head DR, Kopecky KJ, Weick J, et al. Effect of aggressive daunomycin therapy on survival in acute promyelocytic leukemia. Blood. 1995;86:1717.

    CAS  PubMed  Google Scholar 

  410. Pallavicini EB, Luliri P, Anselmetti L, et al. High-dose daunorubicin (DNR) for induction and treatment of relapse in acute promyelocytic leukemia (APL): report of 17 cases. Haematologica. 1988;73:49.

    Google Scholar 

  411. Carotenuto M, Greco M, Bavaro P, et al. Acute promyelocytic leukemia: results of treatment of 10 cases (Abstr). In: Proceedings of the 3rd International Symposium on Therapy of Acute Leukemias; 1982.

    Google Scholar 

  412. Salvaneschi L, Lazzarino M, Morra E, et al. Survival in adult acute myeloid leukemia under conventional chemotherapy (Abstr). In: Proceedings of the 3rd International Symposium on Therapy of Acute Leukemias, 1982.

    Google Scholar 

  413. Marty M, Ganem G, Fisher J, et al. Leucémie aiguë promyélocytaire. Étude rétrospective de 119 malades traités par daunorubicine. Novu Rev Fr Hématol. 1984;26:371.

    CAS  Google Scholar 

  414. Mandelli F, Petti MC, Avvisati G, Amadori S, et al. Acute promyelocytic leukemia: clinical aspects and results of treatment in 62 patients. Haematologica. 1987;72:151.

    PubMed  Google Scholar 

  415. Petti MC, Avvisati G, Amadori S, et al. Acute promyelocytic leukemia: clinical aspects and results of treatment in 62 patients. Haematologica. 1987;72:151.

    CAS  PubMed  Google Scholar 

  416. Bennett JM, Andersen JW, Cassileth PA. Long term survival in acute myeloid leukemia: The Eastern Cooperative Oncology Group. Leuk Res. 1991;15:223.

    Article  CAS  PubMed  Google Scholar 

  417. Clarkson B. Retinoic acid in acute promyelocytic leukemia: the promise and the paradox. Cancer Cells. 1991;3:211.

    CAS  PubMed  Google Scholar 

  418. Fenaux P, Pollet JP, Vandenbossche-Simon L, et al. Treatment of acute promyelocytic leukemia: a report of 70 cases. Leuk Lymphoma. 1991;4:239.

    Article  CAS  PubMed  Google Scholar 

  419. Head DR, Kopecky K, Hewlett J, et al. Survival with cytotoxic therapy in acute promyelocytic leukemia, a SWOG report. Blood. 1991;78:268a.

    Google Scholar 

  420. Thomas X, Archimbaud E, Treille-Ritouet D, et al. Prognostic factors in acute promyelocytic leukemia: a retrospective study of 67 cases. Leuk Lymphoma. 1991;4:249.

    Article  CAS  PubMed  Google Scholar 

  421. Willemze R, Suciu S, Mandelli F, et al. Treatment of patients with acute promyelocytic leukemia. The EORTC-LCG experience. Leukemia. 1994;8(Suppl 2):S48.

    PubMed  Google Scholar 

  422. Berman E. A review of idarubicin in acute leukemia. Oncology. 1993;7:91.

    CAS  PubMed  Google Scholar 

  423. Sanz MA, Montesinos P, Kim HT, et al. All-trans retinoic acid with daunorubicin or idarubicin for risk-adapted treatment of acute promyelocytic leukaemia: a matched-pair analysis of the PETHEMA LPA-2005 and IC-APL studies. Ann Hematol. 2015;94:1347–56.

    Article  CAS  PubMed  Google Scholar 

  424. Berman E, Heller G, Santorsa J, et al. Results of a randomized trial comparing idarubicin and cytosine arabinoside with daunorubicin and cytosine arabinoside in adult patients with newly diagnosed acute myelogenous leukemia. Blood. 1991;77:1666.

    CAS  PubMed  Google Scholar 

  425. Wiernik PH, Banks PLC, Case DC Jr, et al. Cytarabine plus idarubicin or daunorubicin as induction and consolidation therapy for previously untreated adult patients with acute myeloid leukemia. Blood. 1992;79:313.

    CAS  PubMed  Google Scholar 

  426. Avvisati G, Mandelli F, Petti MC, et al. Idarubicin (4-demethoxy-daunorubicin) as a single agent for remission induction of previously untreated acute promyelocytic leukemia: a pilot study of the Italian cooperative group GIMEMA. Eur J Haematol. 1990;44:257.

    Article  CAS  PubMed  Google Scholar 

  427. Takahashi H, Watanabe T, Kinoshita A, et al. High event-free survival rate with minimum-dose-anthracyclines treatment in childhood acute promyelocytic leukaemia: a nationwide prospective study of the Japanese Paediatric Leukaemia/Lymphoma Study Group. Br J Haematol. 2016;174:437–43.

    Article  CAS  PubMed  Google Scholar 

  428. Avvisati G, LoCoco F, Diverio D, et al. AIDA (all-trans retinoic acid + idarubicin) in newly diagnosed acute promyelocytic leukemia: A Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto (GIMEMA) pilot study. Blood. 1996;88:1390–8.

    CAS  PubMed  Google Scholar 

  429. Sanz MA, LoCoco F, Martín G, et al. Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PETHEMA and GIMEMA Cooperative Groups. Blood. 2000;96:1247–53.

    CAS  PubMed  Google Scholar 

  430. Sanz MA, Martín G, González M, et al. Risk-adapted treatment of acute promyelocytic leukemia with all-trans retinoic acid an anthracycline monotherapy: a multicenter study by the PETHEMA Group. Blood. 2004;103:1237–43.

    Article  CAS  PubMed  Google Scholar 

  431. Tallman MS, Rowe JM. Acute promyelocytic leukemia: a paradigm for differentiation therapy with retinoic acid. Blood Rev. 1994;8:70.

    Article  CAS  PubMed  Google Scholar 

  432. Luu HS, Raharman PA. Mature neutrophils with Auer rods following treatment with all-trans retinoic acid for acute promyelocytic leukemia. Blood. 2015;126:121.

    Article  PubMed  Google Scholar 

  433. Muindi J, Frankel S, Huselton C, et al. Clinical pharmacology of oral all-trans retinoic acid with acute promyelocytic leukemia. Cancer Res. 1992;52:2138.

    CAS  PubMed  Google Scholar 

  434. Lefebvre P, Thomas G, Gourmel B, et al. Pharmacokinetics of oral all-trans retinoic acid with acute promyelocytic leukemia. Leukemia. 1991;5:1054.

    CAS  PubMed  Google Scholar 

  435. Smith MA, Adamson PC, Balis FM, et al. Phase I trial and pharmacokinetic evaluation of all-trans-retinoic acid in pediatric patients. J Clin Oncol. 1992;10:1666.

    Article  CAS  PubMed  Google Scholar 

  436. Schwartz EL, Hallam S, Gallagher RE, Wiernik PH. Inhibition of all-trans retinoic acid metabolism by fluconazole in vitro and in patients with acute promyelocytic leukemia. Mol Pharmacol. 1995;50:923.

    CAS  Google Scholar 

  437. Miller VA, Rigas JR, Muindi JRF, et al. Modulation of all-trans retinoic acid pharmacokinetics by liarozole. Cancer Chemother Pharmacol. 1994;34:522.

    Article  CAS  PubMed  Google Scholar 

  438. Muindi JF, Scher HI, Rigas JR, et al. Elevated plasma lipid peroxide content correlates with rapid plasma clearance of all-trans-retinoic acid in patients with advanced cancer. Cancer Res. 1994;54:2125.

    CAS  PubMed  Google Scholar 

  439. Agadir A, Cornic M, Lefebvre P, et al. All-trans retinoic acid pharmacokinetics and bioavailability in acute promyelocytic leukemia: Intracellular concentrations and biologic response relationship. J Clin Oncol. 1995;13:2517.

    Article  CAS  PubMed  Google Scholar 

  440. Degos L, Chomienne C, Daniel MT, et al. All-trans-retinoic acid treatment for patients with acute promyelocytic leukemia. In: Saurat J-H, editor. Retinoids: 10 years on. Basel: Karger; 1991. p. 121.

    Google Scholar 

  441. Vahdat L, Maslak P, Miller W Jr, et al. Early mortality and the retinoic acid syndrome in acute promyelocytic leukemia: impact of leukocytosis, low-dose chemotherapy, PML/RAR-α isoform, and CD13 expression in patients treated with all-trans retinoic acid. Blood. 1994;84:3843.

    CAS  PubMed  Google Scholar 

  442. Fenaux P, Degos L. Treatment of acute promyelocytic leukemia with all trans retinoic acid. Leuk Res. 1991;8:655.

    Article  Google Scholar 

  443. Fenaux P, Castaigne S, Dombret H, et al. All-trans retinoic acid followed by intensive chemotherapy gives a high complete remission rate and may prolong remissions in newly diagnosed acute promyelocytic leukemia: a pilot study on 26 cases. Blood. 1992;80:2176.

    CAS  PubMed  Google Scholar 

  444. Fenaux P, Le Deley MC, Castaigne S, et al. Effect of all trans retinoic acid in newly diagnosed acute promyelocytic leukemia. Results of a multicenter randomized trial. Blood. 1993;82:3241.

    CAS  PubMed  Google Scholar 

  445. Fenaux P, Chevret S, Guerci A, et al. Long-term follow-up confirms the benefit of all-trans retinoic acid in acute promyelocytic leukemia. Leukemia. 2000;14:1371.

    Article  CAS  PubMed  Google Scholar 

  446. Kawai Y, Watanabe K, Kizaki M, et al. Rapid improvement of coagulopathy by all-trans retinoic acid in acute promyelocytic leukemia. Am J Hematol. 1994;46:184.

    Article  CAS  PubMed  Google Scholar 

  447. Kanamaru A, Takemoto Y, Tanimoto M, et al. All-trans retinoic acid for the treatment of newly diagnosed acute promyelocytic leukemia. Blood. 1995;85:1202.

    CAS  PubMed  Google Scholar 

  448. Estey E, Koller C, Cortes J, et al. Treatment of newly-diagnosed acute promyelocytic leukemia with liposomal all-trans retinoic acid. Leuk Lymphoma. 2001;42:309.

    Article  CAS  PubMed  Google Scholar 

  449. Preetesh J, Kantarjian H, Estey E, et al. Single agent liposomal all-trans-retinoic acid (ATRA) as initial therapy for acute promyelocytic leukemia (APL): 13 year follow-up data. Clin Lymphoma Myeloma Leuk. 2014;14:e47–9.

    Article  Google Scholar 

  450. Silva EL, Lima FA, Carneiro G, et al. Improved in vitro antileukemic activity of all-trans retinoic acid loaded in Cholesteryl butyrate solid lipid nanoparticles. J Nanosci Nanotechnol. 2016;16:1291–300.

    Article  CAS  PubMed  Google Scholar 

  451. Warrell RP Jr, Maslak P, Eardley A, et al. Treatment of acute promyelocytic leukemia with all-trans retinoic acid: an update of the New York experience. Leukemia. 1994;8(Suppl 2):S33.

    PubMed  Google Scholar 

  452. de Botton S, Chevret S, Coiteux V, et al. Early onset of chemotherapy can reduce the incidence of ATRA syndrome in newly diagnosed acute promyelocytic leukemia (APL) with low white blood cell counts: results from APL 93 trial. Leukemia. 2003;17:339–42.

    Article  PubMed  CAS  Google Scholar 

  453. Visani G, Tosi P, Cenacchi A, et al. Pre-treatment with all-trans retinoic acid accelerates polymorphonuclear recovery after chemotherapy in patients with acute promyelocytic leukemia. Leuk Lymphoma. 1994;15:143.

    Article  CAS  PubMed  Google Scholar 

  454. de la Serna J, Montesinos P, Vellenga E, et al. Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. Blood. 2008;111:3395–402.

    Article  PubMed  CAS  Google Scholar 

  455. Levin A, Sturzenbecker L, Kazmer S, et al. 9-cis retinoic acid stereoisomer binds and activates the nuclear receptor RXRα. Nature. 1992;355:359.

    Article  CAS  PubMed  Google Scholar 

  456. Shinjo K, Takeshita A, Ohnishi K, et al. Good prognosis of patients with acute promyelocytic leukemia who achieved second complete remission (CR) with a new retinoid, AM80, after relapse from CR induced by all-trans-retinoic acid. Int J Hematol. 2000;72:470–3.

    CAS  PubMed  Google Scholar 

  457. Di Veroli A, Ramadan SM, Divona M, et al. Molecular remission in advanced acute promyelocytic leukaemia after treatment with the oral synthetic retinoid Tamibarotene. Br J Haematol. 2010;151(1):99–101.

    Article  PubMed  Google Scholar 

  458. Shinagawa K, Yenada M, Sakura T, et al. Tamibarotene as maintenance therapy for acute promyelocytic leukemia: results from a randomized controlled trial. J Clin Oncol. 2014;32:3729–35.

    Article  CAS  PubMed  Google Scholar 

  459. Sanford D, Lo-Coco F, Sanz MA, et al. Tamibarotene in patients with acute promyelocytic leukaemia relapsing after treatment with all-trans retinoic acid and arsenic trioxide. Br J Haematol. 2015;171:471–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  460. Visani G, Zauli G, Ottaviani E, et al. All-trans retinoic acid potentiates megakaryocyte colony formation: In vitro and in vivo effects after administration to acute promyelocytic leukemia patients. Leukemia. 1994;8:2183.

    CAS  PubMed  Google Scholar 

  461. Visani G, Ottaviani E, Zauli G, et al. All-trans retinoic acid at low concentration directly stimulates normal adult megakaryocytopoiesis in the presence of thrombopoietin or combined cytokines. Eur J Haematol. 1999;63:149.

    Article  CAS  PubMed  Google Scholar 

  462. Kini AR, Peterson LA, Tallman MS, Lingen MW. Angiogenesis in acute promyelocytic leukemia: induction by vascular endothelial growth factor and inhibition by all-trans retinoic acid. Blood. 2001;97:3919.

    Article  CAS  PubMed  Google Scholar 

  463. Gianni M, Kalac Y, Ponzanelli I, et al. Tyrosine kinase inhibitor STI571 potentiates the pharmacologic activity of retinoic acid in acute promyelocytic leukemia cells: Effects on the degradation of RARα and PML-RARα. Blood. 2001;97:3234.

    Article  CAS  PubMed  Google Scholar 

  464. Sassano A, Katsoilidis E, Antico G, et al. Suppressive effects of statins on acute promyelocytic leukemia cells. Cancer Res. 2007;67:4524–32.

    Article  CAS  PubMed  Google Scholar 

  465. Tomiyama N, Matzno S, Kitada C, et al. The possibility of simvastatin as a chemotherapeutic agent for all-trans retinoic acid-resistant promyelocytic leukemia. Biol Pharm Bull. 2008;31:369–74.

    Article  CAS  PubMed  Google Scholar 

  466. Frankel SR, Eardley A, Lauwers G, et al. The “retinoic acid syndrome” in acute promyelocytic leukemia. Ann Intern Med. 1992;117:292.

    Article  CAS  PubMed  Google Scholar 

  467. Tallman MS, Andersen JW, Schiffer CA, et al. Clinical description of 44 patients with acute promyelocytic leukemia who developed the retinoic acid syndrome. Blood. 2000;95:90–5.

    Google Scholar 

  468. Montesinos P, Bergua M, Vellenga E, et al. Differentiation syndrome in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline chemotherapy: characteristics, outcome, and prognostic factors. Blood. 2009;113:775–83.

    Article  CAS  PubMed  Google Scholar 

  469. Sanz MA, Montesinos P. How we treat differentiation syndrome in patients with acute promyelocytic leukemia. Blood. 2014;123:2777–82.

    Article  CAS  PubMed  Google Scholar 

  470. Cabral R, Caballero JC, Alonso S, et al. Late diddreentiation syndrome in acute promyelocytic leukemia: a challenging diagnosis. Hematol Res. 2014;6:5654.

    Google Scholar 

  471. Jeddi R, Ghédira H, Amor RB, et al. Recurrent differentiation syndrome or septic shock? Unresolved dilemma in a patient with acute promyelocytic leukemia. Med Oncol. 2011;28(1):279–81.

    Article  PubMed  Google Scholar 

  472. Wiley JS, Firkin FC. Reduction of pulmonary toxicity by prednisolone prophylaxis during all-trans retinoic acid treatment of acute promyelocytic leukemia. Australian Leukemia Study Group. Leukemia. 1995;9:774–8.

    CAS  PubMed  Google Scholar 

  473. Raanani P, Segal E, Levi I, et al. Diffuse alveolar hemorrhage in acute promyelocytic leukemia patients treated with ATRA- a manifestation of the basic disease or the treatment. Leuk Lymphoma. 2000;37:605–10.

    Article  CAS  PubMed  Google Scholar 

  474. Saiki I, Fujii H, Yeneda J, et al. Role of aminopeptidase N (CD13) in tumor cell invasion and extracellular matrix degeneration. Int J Cancer. 1993;54:137.

    Article  CAS  PubMed  Google Scholar 

  475. Cunha de Santis G, Tamarozzi MB, Sousa RB, et al. Adhesion molecules and differentiation syndrome: phenotypic and functional analysis of the effect of ATRA, As2O3, phenylbutyrate, and G-CSF in acute promyelocytic leukemia. Haematologica. 2007;92:1615–22.

    Article  PubMed  CAS  Google Scholar 

  476. Luesink M, Pennings JL, Wissink WM, et al. Chemokine induction by all-trans retinoic acid and arsenic trioxide in acute promyelocytic leukemia: triggering the differentiation syndrome. Blood. 2009;114:5512–21.

    Article  CAS  PubMed  Google Scholar 

  477. Luesink M, Jansen JH. Advances in understanding the pulmonary infiltration in acute promyelocytic leukaemia. Br J Haematol. 2010;151(3):209–20.

    Article  CAS  PubMed  Google Scholar 

  478. Csomós K, Nẻmet I, Fésűs L, Balajithy Z. Tissue transglutaminase contributes to the all-trans retinoic acid induced differentiation syndrome phenotype in the NB4 model of acute promyelocytic leukemia. Blood. 2010;116(19):3933–43.

    Article  PubMed  CAS  Google Scholar 

  479. Hakimian D, Tallman MS, Zugerman C, et al. Erythema nodosum associated with all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Leukemia. 1993;7:758.

    CAS  PubMed  Google Scholar 

  480. Gallipoli P, Drummond MW. Pseudotumour cerebri as a manageable side effect of prolonged all-trans retinoic acid therapy in an adult patient with acute promyelocytic leukaemia. Eur J Haematol. 2009;82:242–3.

    Article  PubMed  Google Scholar 

  481. Coombs CC, DeAngelis LM, Feusner JH, et al. Pseudotumor cerebri in acute promyelocytic leukemia patients on intergroup protocol 0129: clinical description and recommendations for new diagnostic criteria. Clin Lymphoma Myeloma Leuk. 2016;16:146–51.

    Article  PubMed  Google Scholar 

  482. Kesler A, Kliper E, Assayag EB, et al. Thrombophilic factors in idiopathic intracranial hypertension: a report of 51 patients and a meta-analysis. Blood Coagul Fibrinolysis. 2010;21:328–33.

    Article  CAS  PubMed  Google Scholar 

  483. Shirono K, Kiyofuji C, Tsuda H. Sweet’s syndrome in a patient with acute promyelocytic leukemia during treatment with alltrans retinoic acid. Int J Hematol. 1995;62:183.

    Article  CAS  PubMed  Google Scholar 

  484. Christ E, Linka A, Jacky E, et al. Sweet’s syndrome involving the musculoskeletal system during treatment of promyelocytic leukemia with all-trans retinoic acid. Leukemia. 1996;10:731.

    CAS  PubMed  Google Scholar 

  485. Torromeo C, Latagliata R, Avvisati G, et al. Intraventricular thrombosis during all-trans retinoic acid treatment in acute promyelocytic leukemia. Leukemia. 2000;15:1311.

    Article  Google Scholar 

  486. Losada R, Espinosa E, Hernandez C, et al. Thrombocytosis in patients with acute promyelocytic leukaemia during all-trans retinoic acid treatment. Br J Haematol. 1996;95:704.

    Article  CAS  PubMed  Google Scholar 

  487. Kentos A, Le Moine F, Crenier L, et al. All-trans retinoic acid induced thrombocytosis in a patient with acute promyelocytic leukaemia. Br J Haematol. 1997;97:685.

    CAS  PubMed  Google Scholar 

  488. Montesinos P, Gozález JD, Gozález J, et al. Therapy-related myeloid neoplasms in patients with acute promyelocytic leukemia treated with all-trans-retinoic acid and anthracycline-based chemotherapy. J Clin Oncol. 2010;28:3872–9.

    Article  CAS  PubMed  Google Scholar 

  489. Aulde J. A study of the pharmacology and therapeutics of arsenic. NY Med J. 1891;53:390.

    Google Scholar 

  490. Niu C, Yan H, Yu T, et al. Studies on treatment of acute promyelocytic leukemia with arsenic trioxide: Remission induction, followup, and molecular monitoring in 11 newly diagnosed and 47 relapsed acute promyelocytic leukemia patients. Blood. 1999;94:3315.

    CAS  PubMed  Google Scholar 

  491. Huang S-Y, Yang C-H, Chen Y-C. Arsenic trioxide therapy for relapsed acute promyelocytic leukemia: an (sic) useful salvage therapy. Leuk Lymphoma. 2000;38:283.

    Article  CAS  Google Scholar 

  492. Camacho LH, Soignet SL, Chanel S, et al. Leukocytosis and the retinoic acid syndrome in patients with acute promyelocytic leukemia treated with arsenic trioxide. J Clin Oncol. 2000;18:2620.

    Article  CAS  PubMed  Google Scholar 

  493. Lin C-P, Huang M-J, Chang IY, et al. Retinoic acid syndrome induced by arsenic trioxide in treating recurrent all-trans retinoic acid resistant acute promyelocytic leukemia. Leuk Lymphoma. 2000;38:195.

    PubMed  Google Scholar 

  494. Kwong YL, Au WY, Chim CS, et al. Arsenic trioxide- and idarubicin-induced remissions in relapsed acute promyelocytic leukemia: clinicopathological and molecular features of a pilot study. Am J Hematol. 2001;66:274.

    Article  CAS  PubMed  Google Scholar 

  495. Muto A, Kizaki M, Kawamura C, et al. A novel differentiation- inducing therapy for acute promyelocytic leukemia with a combination of arsenic trioxide and GM-CSF. Leukemia. 2001;15:1176.

    Article  CAS  PubMed  Google Scholar 

  496. Dai CW, Zhang GS, Shen JK, et al. Use of all-trans retinoic acid in combination with arsenic trioxide for remission induction in patients with newly diagnosed acute promyelocytic leukemia and for consolidation/maintenance in CR patients. Acta Haematol. 2009;121:1–8.

    Article  CAS  PubMed  Google Scholar 

  497. Rvandi F, Estey E, Jones D, et al. Effective treatment of acute promyelocytic leukemia with all-trans retinoic acid, arsenic trioxide, and gemtuzumab ozogamicin. J Clin Oncol. 2009;27:504–10.

    Article  CAS  Google Scholar 

  498. Estey E, Garcia-Manero G, Ferrajoli A, et al. Use of all-trans retinoic acid plus arsenic trioxide as an alternative to chemotherapy in untreated acute promyelocytic leukemia. Blood. 2006;108:3469–73.

    Article  CAS  Google Scholar 

  499. Aznab M, Rezaei M. Induction, consolidation, and maintenance therapies with arsenic as a single agent for acute promyelocytic leukaemia in a 11-year follow-up. Hematol Oncol. 2017;35:113–17.

    Google Scholar 

  500. Song X, Hu X, Lü S, et al. Incorporation of arsenic trioxide in induction therapy improves survival of patients with newly diagnosed acute promyelocytic leukaemia. Eur J Haematol. 2014;93:54–62.

    Article  CAS  PubMed  Google Scholar 

  501. Platzbecker U, Avvisati G, Cicconi L, et al. Improved outcomes with retinoic acid and arsenic trioxide compared with retinoic acid and chemotherapy in non-high risk acute promyelocytic leukemia. Final results of the randomized Italian-German APL0406 trial. J Clin Oncol. 2017;35:605–12.

    Google Scholar 

  502. Wu F, Wu D, Duan C, et al. Bayesian network meta-analysis comparing five contemporary treatment strategies for newly diagnosed acute promyelocytic leukaemia. Oncotarget. 2016;7:47319–31.

    PubMed  PubMed Central  Google Scholar 

  503. Zhu H, Hu J, Li X, et al. All-trans retinoic acid and arsenic combination therapy benefits low-to intermediate-risk patients with newly diagnosed acute promyelocytic leukaemia: a long-term follow-up based on multivariate analysis. Br J Haematol. 2015.; (In Press)

    Google Scholar 

  504. IIand HJ, Collins M, Bradstock K, et al. Use of arsenic trioxide in remission induction and consolidation therapy for acute promyelocytic leukaemia in the Australasian Leukaemia and Lymphoma Group (ALLG) APML 4 study: a non-randomised phase 2 trial. Lancet Hematol. 2015;2:e357–66.

    Article  Google Scholar 

  505. Burnett AK, Russell NH, Hills RK, et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomized controlled phase 3 trial. Lancet Oncol. 2015;16:1295–305.

    Article  CAS  PubMed  Google Scholar 

  506. Lo-Coco F, Avvisati M, Vignetti C, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369:111–21.

    Article  CAS  PubMed  Google Scholar 

  507. Leech M, Morris L, Stewart M, et al. Real-life experience of a brief arsenic trioxide-based consolidation chemotherapy in the management of acute promyelocytic leukemia: favorable outcomes with limited anthracycline exposure and shorter consolidation therapy. Clin Lymphoma Myeloma Leuk. 2015;15:292–7.

    Article  PubMed  Google Scholar 

  508. Band HJ, Wei A, Seymour JF. Have all-trans retinoic acid and arsenic trioxide replaced all-trans retinoic acid and anthracycline in APL as standard of care. Best Prac Res Clin Hematol. 2014;27:39–52.

    Article  CAS  Google Scholar 

  509. Efficace F, Mandelli F, Avvisati G, et al. Randomized phase III trial of retinoic acid and arsenic trioxide in patients with acute promyelocytic leukemia: health-related quality-of-life outcomes. J Clin Oncol. 2014;32:3406–12.

    Article  CAS  PubMed  Google Scholar 

  510. Tallman M, Lo-Cocco F, Barnes G, et al. Cost-effectiveness analysis of treating acute promyelocytic leukemia patients with arsenic trioxide and retinoic acid in the United States. Clin Lymphoma Myeloma Leuk. 2015;15:771–7.

    Article  PubMed  PubMed Central  Google Scholar 

  511. Zhu HH, Wu DP, Jin J, et al. Oral tetra-arsenic tetra-sulfide formula versus intravenous arsenic trioxide as first-line treatment of acute promyelocytic leukemia: a multicenter randomized controlled trial. J Clin Oncol. 2013;31:4215–21.

    Article  CAS  PubMed  Google Scholar 

  512. Torka P, Al Ustwani O, Wetzler M, et al. Swallowing a bitter pill-oral arsenic trioxide for acute promyelocytic leukemia. Blood Rev. 2016;30:201–11.

    Article  CAS  PubMed  Google Scholar 

  513. Yanfeng L, Pencheng HE, Xiaoyan C, Mei Z. Long-term outcome of 31 cases of refractory acute promyelocytic leukemia treated with compound realgar natural indigo tablets administered alternately with chemotherapy. Oncol Lett. 2015;10:1184–90.

    Article  Google Scholar 

  514. Zhu H-H, Huang X-J. Oral arsenic and retinoic acid for non-high-risk acute promyelocytic leukemia. N Engl J Med. 2014;371:2239–41.

    Article  PubMed  Google Scholar 

  515. Lo-Coco F. Outpatient oral treatment for acute promyelocytic leukemia. N Engl J Med. 2015;372:884–5.

    Article  CAS  PubMed  Google Scholar 

  516. Zhu H, Hu J, Chen L, et al. The 12 year follow-up of survival, chronic adverse effects and retention of arsenic in patients with acute promyelocytic leukemia. Blood. 2016;128:1525–8.

    Article  CAS  PubMed  Google Scholar 

  517. Ma H, Yang J. Insights into all-trans-retinoic acid and arsenic trioxide combination treatment in acute promyelocytic leukemia: a meta-analysis. Acta Haematol. 2015;134:101–8.

    Article  CAS  PubMed  Google Scholar 

  518. Ohnishi K, Yoshida H, Shigeno K, et al. Prolongation of the QT interval and ventricular tachycardia in patients treated with arsenic trioxide for acute promyelocytic leukemia. Ann Intern Med. 2000;133:881.

    Article  CAS  PubMed  Google Scholar 

  519. Unnikrishnan D, Dutcher JP, Varshneya N, et al. Torsades de pointes in 3 patients with leukemia treated with arsenic trioxide. Blood. 2001;97:1514.

    Article  CAS  PubMed  Google Scholar 

  520. Unnikrishnan D, Dutcher JP, Garl S, et al. Cardiac monitoring of patients receiving arsenic trioxide therapy. Br J Haematol. 2004;124:610–7.

    Article  PubMed  Google Scholar 

  521. Naito K, Kobayashi M, Sahara N, et al. Two cases of acute promyelocytic leukemia complicated by torsade de pointes during arsenic trioxide therapy. Int J Hematol. 2006;83:318–23.

    Article  CAS  PubMed  Google Scholar 

  522. Westervelt P, Brown RA, Adkins DR, et al. Sudden death among patients with acute promyelocytic leukemia treated with arsenic trioxide. Blood. 2001;98:266.

    Article  CAS  PubMed  Google Scholar 

  523. Roboz GJ, Ritchie EK, Carlin RF, et al. Prevalence, management, and clinical consequences of QT interval prolongation during treatment with arsenic trioxide. J Clin Oncol. 2014;32:3723–8.

    Article  CAS  PubMed  Google Scholar 

  524. Raghu KG, Yadav GK, Singh R, et al. Evaluation of adverse cardiac events induced by arsenic trioxide, a potent anti-APL drug. J Environ Pathol Toxicol Oncol. 2009;28:241–52.

    Article  CAS  PubMed  Google Scholar 

  525. Mannis GN, Logan AC, Leavitt AD, et al. Delayed hematopoietic recovery after auto-SCT in patients receiving arsenic trioxide-based therapy for acute promyelocytic leukemia: a multi-center analysis. Bone Marrow Transplant. 2015;50:40–4.

    Article  CAS  PubMed  Google Scholar 

  526. Au WY, Lang BH, Fong BM, et al. Thyrid arsenic content and papillary thyroid carcinoma 10 years after oral arsenic trioxide therapy for refractory acute promyelocytic leukemia. Leuk Lymphoma. 2014;55:1184–5.

    Article  PubMed  Google Scholar 

  527. Zhang Y, Wu S, Luo D, et al. Addition of arsenic trioxide into induction regimens could not accelerate recovery of abnormality of coagulation and fibrinolysis in patients with acute promyelocytic leukemia. PLoS One. 2016;11:e0147545.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  528. Yedjou C, Thuisseu L, Tchounwou C, et al. Ascorbic acid potentiation of arsenic trioxide anticancer activity against acute promyelocytic leukemia. Arch Drug Inf. 2009;2:59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  529. Chang JE, Voorhees PM, Kolesar JM, et al. Phase II study of arsenic trioxide and ascorbic acid for relapsed or refractory lymphoid malignancies: Wisconsin Oncology Network study. Hematol Oncol. 2009;27:11–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  530. Kuroki M, Ariumi Y, Ikeda M, et al. Arsenic trioxide inhibits hepatitis C virus RNA replication through modulation of the glutathione redox system and oxidative stress. J Virol. 2009;83:2338–48.

    Article  CAS  PubMed  Google Scholar 

  531. Avvisanti G, Lo Coco F, Diverio D, et al. AIDA (all-trans retinoic acid + idarubicin) in newly diagnosed acute promyelocytic leukemia: a Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto (GIMEMA) pilot study. Blood. 1996;88:1390–8.

    Google Scholar 

  532. Avvisati G, Petti MC, Lo-Coco F, et al. Induction therapy with idarubicin alone significantly influences event-free survival duration in patients with newly diagnosed hypergranular acute promyelocytic leukemia: final results of the GIMEMA randomized study LAP 0389 with 7 years minimal follow-up. Blood. 2002;100:3141–6.

    Article  CAS  PubMed  Google Scholar 

  533. Lengfelder E, Reichert A, Schoch C, et al. Double induction strategy including high dose cytarabine in combination with all-trans retinoic acid: effects in patients with newly diagnosed acute promyelocytic leukemia. Leukemia. 2000;14:1362.

    Article  CAS  PubMed  Google Scholar 

  534. Lengfelder E, Haferlach C, Saussele S, et al. High dose ara-C in the treatment of newly diagnosed acute promyelocytic leukemia: long-term results of the German AMLCG. Leukemia. 2009;23:2248–58.

    Article  CAS  PubMed  Google Scholar 

  535. Adẻs L, Sanz MA, Chevret S, et al. Treatment of newly diagnosed acute promyelocytic leukemia (APL): a comparison of French-Belgian-Swiss and PETHEMA results. Blood. 2008;111:1078–84.

    Article  PubMed  Google Scholar 

  536. Kelaidi C, Chevret S, De Botton S, et al. Improved outcome of acute promyelocytic leukemia with high WBC counts over the last 15 years: the European APL Group experience. J Clin Oncol. 2009;27:2668–76.

    Article  PubMed  Google Scholar 

  537. Dutcher JP, Wiernik PH, Markus S, et al. Intensive maintenance therapy improves survival in adult acute nonlymphocytic leukemia: an eight-year follow-up. Leukemia. 1988;2:413.

    CAS  PubMed  Google Scholar 

  538. Kantarjian HM, Keating MJ, Walters RS, et al. Role of maintenance chemotherapy in acute promyelocytic leukemia. Cancer. 1987;59:1258.

    Article  CAS  PubMed  Google Scholar 

  539. Tallman MS, Andersen JW, Schiffer CA, et al. All-trans retinoic acid in acute promyelocytic leukemia. N Engl J Med. 1997;337:1021.

    Article  CAS  PubMed  Google Scholar 

  540. Tallman MS, Andersen JW, Schiffer CA, et al. All-trans retinoic acid in acute promyelocytic leukemia: long-term outcome results and prognostic factor analysis from the North American Inter- group protocol. Blood. 2002;100:4298.

    Article  CAS  PubMed  Google Scholar 

  541. Douer D, Zixkl LN, Schiffer CA, et al. All-trans retinoic acid and late relapss in acute promyelocytic leukemia: very long-term follow-up of the North American Intergroup study 10129. Leuk Res. 2013;37:795–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  542. Asou N, Kishimoto Y, Kiyoi H, et al. A randomized study with or without intensified maintenance chemotherapy in patients with acute promyelocytic leukemia who have become negative for PML-RARα transcript after consolidation therapy: Japan Adilt Leukemia Study Group (JALSG) APL97 study. Blood. 2007;110:59–66.

    Article  CAS  PubMed  Google Scholar 

  543. Lancet JE. Postremission therapy in acute promyelocytic leukemia: room for improvement? J Clin Oncol. 2014;32:3692–6.

    Article  CAS  PubMed  Google Scholar 

  544. Coutre SE, Othus M, Powell B, et al. Arsenic trioxide during consolidation for patients with previously untreated low/intermediate risk acute promyelocytic leukaemia may eliminate the need for maintenance therapy. Br J Haematol. 2014;165:497–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  545. Liu CC, Wang H, Wang WD, et al. Consolidation therapy of arsenic trioxide alternated with chemotherapy achieves remarkable efficacy in newly diagnosed acute promyelocytic leukemia. Onco Targets Ther. 2015;8:3297–303.

    PubMed  PubMed Central  Google Scholar 

  546. Yamamoto M, Okada K, Akiyama H, et al. Evaluation of the efficacy of maintenance therapy for low-to-intermediate-risk acute promyelocytic leukemia in molecular remission: a retrospective single –institution study. Mol Clin Oncol. 2015;3:449–53.

    Article  PubMed  Google Scholar 

  547. Lo Coco F, Diverio D, Avvisati G, et al. Therapy of molecular relapse in acute promyelocytic leukemia. Blood. 1999;94:2225.

    CAS  PubMed  Google Scholar 

  548. Lengfelder E, Lo-Cocco F, Ades L, et al. Arsenic trioxide-based therapy of relapsed acute promyelocytic leukemia: registry results from the European LeukemiaNet. Leukemia. 2015;29:1084–91.

    Article  CAS  PubMed  Google Scholar 

  549. Thomas X, Pigneux A, Raffoux E, et al. Superiority of an arsenic trioxide-based regimen over a historic control combining all-trans retinoic acid plus intensive chemotherapy in the treatment of relapsed acute promyelocytic leukemia. Haematologica. 2006;91:996–7.

    CAS  PubMed  Google Scholar 

  550. Shigeno K, Naito K, Sahara N, et al. Arsenic trioxide therapy in relapsed or refractory Japanese patients with acute promyelocytic leukemia: updated outcomes of the phase II study and postremission therapies. Int J Hematol. 2005;82:224–9.

    Article  CAS  PubMed  Google Scholar 

  551. Raffoux E, Rousselot P, Poupon J, et al. Combined treatment with arsenic trioxide and all-trans retinoic acid in patients with relapsed acute promyelocytic leukemia. J Clin Oncol. 2003;21:2326–34.

    Article  CAS  PubMed  Google Scholar 

  552. Lazo G, Kantarjian H, Estey E, et al. Use of arsenic trioxide (As2O3) in the treatment of patients with acute promyelocytic leukemia: the M.D. Anderson experience. Cancer. 2003;97:2218–24.

    Article  CAS  PubMed  Google Scholar 

  553. Visani G, Piccaluga PP, Martinelli G, et al. Sustained molecular remission in advanced acute promyelocytic leukemia with combined pulsed retinoic acid and arsenic trioxide. Clinical evidence of synergistic effect and real-time quantification of minimal residual disease. Haematologica. 2003;88:15.

    Google Scholar 

  554. de Botton S, Fawaz A, Chevret S, et al. Autologous and allogeneic stem-cell transplantation as salvage treatment of acute promyelocytic leukemia initially treated with all-trans-retinoic acid: a retrospective analysis of the European acute promyelocytic leukemia group. J Clin Oncol. 2005;23:120–6.

    Article  PubMed  CAS  Google Scholar 

  555. Termuhlen AM, Klopfenstein K, Olshefski R, et al. Mobilization of PML-RARA negative blood stem cells and salvage with autologous peripheral blood stem cell transplantation in children with relapsed acute promyelocytic leukemia. Pediatr Blood Cancer. 2008;51:521–4.

    Article  PubMed  Google Scholar 

  556. Fenaux P, Tertian G, Castaigne S, et al. A randomized trial of amsacrine and rubidazone in 39 patients with acute promyelocytic leukemia. J Clin Oncol. 1991;9:1556.

    Article  CAS  PubMed  Google Scholar 

  557. Ganzel C, Mathews V, Alimoghaddam K, et al. Autologous transplant remains the preferred therapy for relapsed APL in CR2. Bone Marrow Transplant. 2016;51:1180–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  558. Takeshita A, Shibata Y, Shinjo K, et al. Successful treatment of relapse of acute promyelocytic leukemia with a new synthetic retinoid, Am80. Ann Intern Med. 1996;124:893.

    Article  CAS  PubMed  Google Scholar 

  559. Shinjo K, Takeshita A, Kitamura K, et al. Good prognosis of patients with acute promyelocytic leukemia who achieved second complete remission (CR) with a new retinoid AM80, after relapse from CR induced by all-trans-retinoic-acid. Int J Hematol. 2000;72:470–3.

    CAS  PubMed  Google Scholar 

  560. Chendamarai E, Ganesan S, Alex AA, et al. Comparison of newly diagnosed and relapsed patients with acute promyelocytic leukemia treated with arsenic trioxide: insight into mechanisms of resistance. PLoS One. 2015;10:0121912.

    Article  CAS  Google Scholar 

  561. Holter-Chakrabarty JL, Rubinger M, Le-Rademacher J, et al. Autologous is superior to allogeneic hematopoietic cell transplantation for acute promyelocytic leukemia in second complete remission. Biol Blood Marrow Transplant. 2014;20:1021–5.

    Article  PubMed  Google Scholar 

  562. Yang D, Hladnik L. Treatment of acute promyelocytic leukemia during pregnancy. Pharmacotherapy. 2009;29:709–24.

    Article  PubMed  Google Scholar 

  563. Ganzitti L, Fachechi G, Driul L, Marchesoni D. Acute promyelocytic leukemia during pregnancy. Fertil Steril. 2010;94(6):2330.

    Article  PubMed  Google Scholar 

  564. Valappil S, Kurkar M, Howell R. Outcome of pregnancy in women treated with all-trans retinoic acid; a case report and review of the literature. Hematology. 2007;12:415–8.

    Article  CAS  PubMed  Google Scholar 

  565. Ammatuna E, Cavaliere A, Divona M, et al. Successful pregnancy after arsenic trioxide therapy for relapsed acute promyelocytic leukaemia. Br J Haematol. 2009;146:341.

    Article  PubMed  Google Scholar 

  566. Hoffman MA, Wiernik PH, Kleiner GJ. Acute promyelocytic leukemia and pregnancy. A case report Cancer. 1995;76:2237.

    CAS  PubMed  Google Scholar 

  567. Sanz MA, Montesinos P, Casale MF, et al. Maternal and fetal outcomes in pregnant women with acute promyelocytic leukemia. Ann Hematol. 2015;94:1357–61.

    Article  CAS  PubMed  Google Scholar 

  568. Verma V, Giri S, Manandhar S, et al. Acute promyelocytic leukemia during pregnancy: a systematic analysis of outcome. Leuk Lymphoma. 2016;57:616–22.

    CAS  PubMed  Google Scholar 

  569. Abla O, Ribeiro RC. How I treat children and adolescents with acute promyelocytic leukaemia. Br J Haematol. 2014;164:24–38.

    Article  CAS  PubMed  Google Scholar 

  570. Stein EM, Tallman MS. Acute promyelocytic leukemia in children and adolescents. Acta Haematol. 2014;132:307–12.

    Article  CAS  PubMed  Google Scholar 

  571. Tallman MS, Kwaan HC. Reassessing the hemostatic disorder associated with acute promyelocytic leukemia. Blood. 1992;79(3):543–53.

    CAS  PubMed  Google Scholar 

  572. Barbui T, Finazzi G, Falanga A. The impact of all-trans-retinoic acid on the coagulopathy of acute promyelocytic leukemia. Blood. 1998;91(9):3093–102.

    CAS  PubMed  Google Scholar 

  573. Mantha S, Tallman MS, Soff GA. What's new in the pathogenesis of the coagulopathy in acute promyelocytic leukemia? Curr Opin Hematol. 2016;23(2):121–6.

    Article  CAS  PubMed  Google Scholar 

  574. Gralnick HR, Bagley J, Abrell E. Heparin treatment for the hemorrhagic diathesis of acute promyelocytic leukemia. Am J Med. 1972;52(2):167–74.

    Article  CAS  PubMed  Google Scholar 

  575. Jones ME, Saleem A. Acute promyelocytic leukemia. Am J Med. 1978;65(4):673–7.

    Article  CAS  PubMed  Google Scholar 

  576. Cordonnier C, Vernant JP, Brun B, Heilmann MG, Kuentz M, Bierling P, et al. Acute promyelocytic leukemia in 57 previously untreated patients. Cancer. 1985;55(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  577. Cunningham I, Gee TS, Reich LM, Kempin SJ, Naval AN, Clarkson BD. Acute promyelocytic leukemia: treatment results during a decade at Memorial Hospital. Blood. 1989;73(5):1116–22.

    CAS  PubMed  Google Scholar 

  578. Rodeghiero F, Avvisati G, Castaman G, Barbui T, Mandelli F. Early deaths and anti-hemorrhagic treatments in acute promyelocytic leukemia. A GIMEMA retrospective study in 268 consecutive patients. Blood. 1990;75(11):2112–7.

    CAS  PubMed  Google Scholar 

  579. Goldberg MA, Ginsburg D, Mayer RJ, Stone RM, Maguire M, Rosenthal DS, et al. Is heparin administration necessary during induction chemotherapy for patients with acute promyelocytic leukemia? Blood. 1987;69(1):187–91.

    CAS  PubMed  Google Scholar 

  580. Bennett JM, Young ML, Andersen JW, Cassileth PA, Tallman MS, Paietta E, et al. Long-term survival in acute myeloid leukemia: the Eastern Cooperative Oncology Group experience. Cancer. 1997;80(11 Suppl):2205–9.

    Article  CAS  PubMed  Google Scholar 

  581. Dombret H, Scrobohaci ML, Ghorra P, Zini JM, Daniel MT, Castaigne S, et al. Coagulation disorders associated with acute promyelocytic leukemia: corrective effect of all-trans retinoic acid treatment. Leukemia. 1993;7(1):2–9.

    CAS  PubMed  Google Scholar 

  582. Watanabe R, Murata M, Takayama N, Tokuhira M, Kizaki M, Okamoto S, et al. Long-term follow-up of hemostatic molecular markers during remission induction therapy with all-trans retinoic acid for acute promyelocytic leukemia. Keio Hematology-Oncology Cooperative Study Group (KHOCS). Thromb Haemost. 1997;77(4):641–5.

    CAS  PubMed  Google Scholar 

  583. Iland HJ, Bradstock K, Supple SG, Catalano A, Collins M, Hertzberg M, et al. All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood. 2012;120(8):1570–80. quiz 752

    Article  CAS  PubMed  Google Scholar 

  584. Breccia M, Lo CF. Thrombo-hemorrhagic deaths in acute promyelocytic leukemia. Thromb Res. 2014;133(Suppl 2):S112–6.

    Article  CAS  PubMed  Google Scholar 

  585. Lehmann S, Ravn A, Carlsson L, Antunovic P, Deneberg S, Mollgard L, et al. Continuing high early death rate in acute promyelocytic leukemia: a population-based report from the Swedish Adult Acute Leukemia Registry. Leukemia. 2011;25(7):1128–34.

    Article  CAS  PubMed  Google Scholar 

  586. Rahme R, Thomas X, Recher C, Vey N, Delaunay J, Deconinck E, et al. Early death in acute promyelocytic leukemia (APL) in French centers: a multicenter study in 399 patients. Leukemia. 2014;28(12):2422–4.

    Article  CAS  PubMed  Google Scholar 

  587. Altman JK, Rademaker A, Cull E, Weitner BB, Ofran Y, Rosenblat TL, et al. Administration of ATRA to newly diagnosed patients with acute promyelocytic leukemia is delayed contributing to early hemorrhagic death. Leuk Res. 2013;37(9):1004–9.

    Article  CAS  PubMed  Google Scholar 

  588. McClellan JS, Kohrt HE, Coutre S, Gotlib JR, Majeti R, Alizadeh AA, et al. Treatment advances have not improved the early death rate in acute promyelocytic leukemia. Haematologica. 2012;97(1):133–6.

    Article  PubMed  PubMed Central  Google Scholar 

  589. Tallman M, Lo-Coco F, Kwaan H, Sanz M, Gore S. Clinical roundtable monograph. Early death in patients with acute promyelocytic leukemia. Clinical advances in hematology & oncology : H&O. 2011;9(2):1–16.

    Google Scholar 

  590. Park JH, Qiao B, Panageas KS, Schymura MJ, Jurcic JG, Rosenblat TL, et al. Early death rate in acute promyelocytic leukemia remains high despite all-trans retinoic acid. Blood. 2011;118(5):1248–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  591. Dombret H, Scrobohaci ML, Daniel MT, Miclea JM, Castaigne S, Chomienne C, et al. In vivo thrombin and plasmin activities in patients with acute promyelocytic leukemia (APL): effect of all-trans retinoic acid (ATRA) therapy. Leukemia. 1995;9(1):19–24.

    CAS  PubMed  Google Scholar 

  592. Tallman MS, Lefebvre P, Baine RM, Shoji M, Cohen I, Green D, et al. Effects of all-trans retinoic acid or chemotherapy on the molecular regulation of systemic blood coagulation and fibrinolysis in patients with acute promyelocytic leukemia. J Thromb Haemost. 2004;2(8):1341–50.

    Article  CAS  PubMed  Google Scholar 

  593. Zhang P, Wang S, Hu X, Shi F, Qiu F, Hong G, et al. Arsenic trioxide treated 72 cases of acute promyelocytic leukemia. Chin J Hematol. 1996;17(1):58–60.

    Google Scholar 

  594. Mitrovic M, Suvajdzic N, Bogdanovic A, Kurtovic NK, Sretenovic A, Elezovic I, et al. International Society of Thrombosis and Hemostasis Scoring System for disseminated intravascular coagulation >/= 6: a new predictor of hemorrhagic early death in acute promyelocytic leukemia. Med Oncol. 2013;30(1):478.

    Article  PubMed  CAS  Google Scholar 

  595. Jeddi R, Kacem K, Ben Neji H, Mnif S, Gouider E, Aissaoui L, et al. Predictive factors of all-trans-retinoic acid related complications during induction therapy for acute promyelocytic leukemia. Hematology. 2008;13(3):142–6.

    Article  CAS  PubMed  Google Scholar 

  596. Lo-Coco F, Avvisati G, Vignetti M, Breccia M, Gallo E, Rambaldi A, et al. Front-line treatment of acute promyelocytic leukemia with AIDA induction followed by risk-adapted consolidation for adults younger than 61 years: results of the AIDA-2000 trial of the GIMEMA Group. Blood. 2010;116(17):3171–9.

    Article  CAS  PubMed  Google Scholar 

  597. Yanada M, Matsushita T, Asou N, Kishimoto Y, Tsuzuki M, Maeda Y, et al. Severe hemorrhagic complications during remission induction therapy for acute promyelocytic leukemia: incidence, risk factors, and influence on outcome. Eur J Haematol. 2007;78(3):213–9.

    Article  PubMed  Google Scholar 

  598. Sanz MA, Montesinos P, Vellenga E, Rayon C, de la Serna J, Parody R, et al. Risk-adapted treatment of acute promyelocytic leukemia with all-trans retinoic acid and anthracycline monochemotherapy: long-term outcome of the LPA 99 multicenter study by the PETHEMA Group. Blood. 2008;112(8):3130–4.

    Article  CAS  PubMed  Google Scholar 

  599. Ziegler S, Sperr WR, Knobl P, Lehr S, Weltermann A, Jager U, et al. Symptomatic venous thromboembolism in acute leukemia. Incidence, risk factors, and impact on prognosis. Thromb Res. 2005;115(1-2):59–64.

    Article  CAS  PubMed  Google Scholar 

  600. De Stefano V, Sora F, Rossi E, Chiusolo P, Laurenti L, Fianchi L, et al. The risk of thrombosis in patients with acute leukemia: occurrence of thrombosis at diagnosis and during treatment. J Thromb Haemost. 2005;3(9):1985–92.

    Article  PubMed  Google Scholar 

  601. Breccia M, Avvisati G, Latagliata R, Carmosino I, Guarini A, De Propris MS, et al. Occurrence of thrombotic events in acute promyelocytic leukemia correlates with consistent immunophenotypic and molecular features. Leukemia. 2007;21(1):79–83.

    Article  CAS  PubMed  Google Scholar 

  602. Escudier SM, Kantarjian HM, Estey EH. Thrombosis in patients with acute promyelocytic leukemia treated with and without all-trans retinoic acid. Leuk Lymphoma. 1996;20(5-6):435–9.

    Article  CAS  PubMed  Google Scholar 

  603. Tsukada N, Wada K, Aoki S, Hashimoto S, Kishi K, Takahashi M, et al. Induction Therapy with All-Trans Retinoic Acid for Acute Promyelocytic Leukemia: A Clinical Study of 10 Cases, Including a Fetal Case with Thromboembolism. Intern Med. 1996;35(1):10–4.

    Article  CAS  PubMed  Google Scholar 

  604. Pogliani EM, Rossini F, Casaroli I, Maffe P, Corneo G. Thrombotic complications in acute promyelocytic leukemia during all-trans-retinoic acid therapy. Acta Haematol. 1997;97(4):228–30.

    Article  CAS  PubMed  Google Scholar 

  605. Sanz MA, Montesinos P. Open issues on bleeding and thrombosis in acute promyelocytic leukemia. Thromb Res. 2010;125:S51–S4.

    Article  PubMed  Google Scholar 

  606. Choudhry A, DeLoughery TG. Bleeding and thrombosis in acute promyelocytic leukemia. Am J Hematol. 2012;87(6):596–603.

    Article  PubMed  Google Scholar 

  607. Fenaux P, Tertian G, Castaigne S, Tilly H, Leverger G, Guy H, et al. A randomized trial of amsacrine and rubidazone in 39 patients with acute promyelocytic leukemia. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 1991;9(9):1556–61.

    Article  CAS  Google Scholar 

  608. Gralnick HR, Sultan C. Acute promyelocytic leukaemia: haemorrhagic manifestation and morphologic criteria. Br J Haematol. 1975;29(3):373–6.

    Article  CAS  PubMed  Google Scholar 

  609. Groopman J, Ellman L. Acute promyelocytic leukemia. Am J Hematol. 1979;7(4):395–408.

    Article  CAS  PubMed  Google Scholar 

  610. Collins AJ, Bloomfield CD, Peterson BA, McKenna RW, Edson JR. Acute promyelocytic leukemia. Management of the coagulopathy during daunorubicin-prednisone remission induction. Arch Intern Med. 1978;138(11):1677–80.

    Article  CAS  PubMed  Google Scholar 

  611. Bennett B, Booth NA, Croll A, Dawson AA. The bleeding disorder in acute promyelocytic leukaemia: fibrinolysis due to u-PA rather than defibrination. Br J Haematol. 1989;71(4):511–7.

    Article  CAS  PubMed  Google Scholar 

  612. Bennett M, Parker AC, Ludlam CA. Platelet and fibrinogen survival in acute promyelocytic leukaemia. BMJ. 1976;2(6035):565-.

    Google Scholar 

  613. Breen KA, Grimwade D, Hunt BJ. The pathogenesis and management of the coagulopathy of acute promyelocytic leukaemia. Br J Haematol. 2012;156(1):24–36.

    Article  CAS  PubMed  Google Scholar 

  614. Nemerson Y. Tissue factor and hemostasis. Blood. 1988;71(1):1–8.

    CAS  PubMed  Google Scholar 

  615. Bauer KA, Conway EM, Bach R, Konigsberg WH, Griffin JD, Demetri G. Tissue factor gene expression in acute myeloblastic leukemia. Thromb Res. 1989;56(3):425–30.

    Article  CAS  PubMed  Google Scholar 

  616. Andoh K, Sadakata H, Uchiyama T, Narahara N, Tanaka H, Kobayashi N, et al. One-stage method for assay of tissue factor activity of leukemic cell with special reference to disseminated intravascular coagulation. Am J Clin Pathol. 1990;93(5):679–84.

    Article  CAS  PubMed  Google Scholar 

  617. Kubota T, Andoh K, Sadakata H, Tanaka H, Kobayashi N. Tissue factor released from leukemic cells. Thromb Haemost. 1991;65(1):59–63.

    CAS  PubMed  Google Scholar 

  618. Yan J, Wang K, Dong L, Liu H, Chen W, Xi W, et al. PML/RARalpha fusion protein transactivates the tissue factor promoter through a GAGC-containing element without direct DNA association. Proc Natl Acad Sci U S A. 2010;107(8):3716–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  619. Kwaan HC, Rego EM, McMachon B, Weiss I. Thrombin generation and fibrinolytic activity in microparticles in acute promyelocytic leukemia. Blood. 2013;122(21):3620.

    Google Scholar 

  620. Kwaan HC, Rego EM. Role of microparticles in the hemostatic dysfunction in acute promyelocytic leukemia. Semin Thromb Hemost. 2010;36(8):917–24.

    Article  CAS  PubMed  Google Scholar 

  621. Ma G, Liu F, Lv L, Gao Y, Su Y. Increased promyelocytic-derived microparticles: a novel potential factor for coagulopathy in acute promyelocytic leukemia. Ann Hematol. 2013;92(5):645–52.

    Article  CAS  PubMed  Google Scholar 

  622. Gordon SG, Franks JJ, Lewis B. Cancer procoagulant A: a factor X activating procoagulant from malignant tissue. Thromb Res. 1975;6(2):127–37.

    Article  CAS  PubMed  Google Scholar 

  623. Falanga A, Gordon SG. Isolation and characterization of cancer procoagulant: a cysteine proteinase from malignant tissue. Biochemistry. 1985;24(20):5558–67.

    Article  CAS  PubMed  Google Scholar 

  624. Donati MB, Falanga A, Consonni R, Alessio MG, Bassan R, Buelli M, et al. Cancer procoagulant in acute non lymphoid leukemia: relationship of enzyme detection to disease activity. Thromb Haemost. 1990;64(1):11–6.

    CAS  PubMed  Google Scholar 

  625. Bevilacqua MP. Interleukin 1 (IL-1) induces biosynthesis and cell surface expression of procoagulant activity in human vascular endothelial cells. J Exp Med. 1984;160(2):618–23.

    Article  CAS  PubMed  Google Scholar 

  626. Bevilacqua MP, Pober JS, Majeau GR, Fiers W, Cotran RS, Gimbrone MA. Recombinant tumor necrosis factor induces procoagulant activity in cultured human vascular endothelium: characterization and comparison with the actions of interleukin 1. Proc Natl Acad Sci. 1986;83(12):4533–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  627. Nawroth PP, Handley DA, Esmon CT, Stern DM. Interleukin 1 induces endothelial cell procoagulant while suppressing cell-surface anticoagulant activity. Proc Natl Acad Sci U S A. 1986;83(10):3460–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  628. Nawroth PP. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med. 1986;163(3):740–5.

    Article  CAS  PubMed  Google Scholar 

  629. Clauss M. Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med. 1990;172(6):1535–45.

    Article  CAS  PubMed  Google Scholar 

  630. Cozzolino F, Torcia M, Miliani A, Carossino AM, Giordani R, Cinotti S, et al. Potential role of interleukin-1 as the trigger for diffuse intravascular coagulation in acute nonlymphoblastic leukemia. Am J Med. 1988;84(2):240–50.

    Article  CAS  PubMed  Google Scholar 

  631. Emeis JJ. Interleukin 1 and lipopolysaccharide induce an inhibitor of tissue-type plasminogen activator in vivo and in cultured endothelial cells. J Exp Med. 1986;163(5):1260–6.

    Article  CAS  PubMed  Google Scholar 

  632. Nachman RL. Interleukin 1 induces endothelial cell synthesis of plasminogen activator inhibitor. J Exp Med. 1986;163(6):1595–600.

    Article  CAS  PubMed  Google Scholar 

  633. Miyauchi S, Moroyama T, Kyoizumi S, Asakawa J-I, Okamoto T, Takada K. Malignant tumor cell lines produce interleukin-1-like factor. In Vitro Cell Dev Biol. 1988;24(8):753–8.

    Article  CAS  PubMed  Google Scholar 

  634. Noguchi M, Sakai T, Kisiel W. Identification and partial purification of a novel tumor-derived protein that induces tissue factor on cultured human endothelial cells. Biochem Biophys Res Commun. 1989;160(1):222–7.

    Article  CAS  PubMed  Google Scholar 

  635. Chan TK, Chan GT, Chan V. Hypofibrinogenemia due to increased fibrinolysis in two patients with acute promyelocytic leukemia. Aust N Z J Med. 1984;14(3):245–9.

    Article  CAS  PubMed  Google Scholar 

  636. Sterrenberg L, Haak HL, Brommer EJP, Nieuwenhuizen W. Evidence of Fibrinogen Breakdown by Leukocyte Enzymes in a Patient with Acute Promyelocytic Leukemia. Pathophysiol Haemost Thromb. 1985;15(2):126–33.

    Article  CAS  Google Scholar 

  637. Schwartz BS. Epsilon-Aminocaproic Acid in the Treatment of Patients with Acute Promyelocytic Leukemia and Acquired Alpha-2-Plasmin Inhibitor Deficiency. Ann Intern Med. 1986;105(6):873.

    Article  CAS  PubMed  Google Scholar 

  638. Velasco F, Torres A, Andres P, Martinez F, Gomez P. Changes in plasma levels of protease and fibrinolytic inhibitors induced by treatment in acute myeloid leukemia. Thromb Haemost. 1984;52(1):81–4.

    CAS  PubMed  Google Scholar 

  639. Wilson EL, Jacobs P, Dowdle EB. The secretion of plasminogen activators by human myeloid leukemic cells in vitro. Blood. 1983;61(3):568–74.

    CAS  PubMed  Google Scholar 

  640. Sakata Y, Murakami T, Noro A, Mori K, Matsuda M. The specific activity of plasminogen activator inhibitor-1 in disseminated intravascular coagulation with acute promyelocytic leukemia. Blood. 1991;77(9):1949–57.

    CAS  PubMed  Google Scholar 

  641. Hirata F, Schiffmann E, Venkatasubramanian K, Salomon D, Axelrod J. A phospholipase A2 inhibitory protein in rabbit neutrophils induced by glucocorticoids. Proc Natl Acad Sci. 1980;77(5):2533–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  642. Chang KS, Wang G, Freireich EJ, Daly M, Naylor SL, Trujillo JM, et al. Specific expression of the annexin VIII gene in acute promyelocytic leukemia. Blood. 1992;79(7):1802–10.

    CAS  PubMed  Google Scholar 

  643. Hajjar KA, Jacovina AT, Chacko J. An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J Biol Chem. 1994;269(33):21191–7.

    CAS  PubMed  Google Scholar 

  644. Menell JS, Cesarman GM, Jacovina AT, McLaughlin MA, Lev EA, Hajjar KA. Annexin II and Bleeding in Acute Promyelocytic Leukemia. N Engl J Med. 1999;340(13):994–1004.

    Article  CAS  PubMed  Google Scholar 

  645. Cesarman GM, Guevara CA, Hajjar KA. An endothelial cell receptor for plasminogen/tissue plasminogen activator (t-PA). II. Annexin II-mediated enhancement of t-PA-dependent plasminogen activation. J Biol Chem. 1994;269(33):21198–203.

    CAS  PubMed  Google Scholar 

  646. Liu Y, Wang Z, Jiang M, Dai L, Zhang W, Wu D, et al. The expression of annexin II and its role in the fibrinolytic activity in acute promyelocytic leukemia. Leuk Res. 2011;35(7):879–84.

    Article  CAS  PubMed  Google Scholar 

  647. Stein E, McMahon B, Kwaan H, Altman JK, Frankfurt O, Tallman MS. The coagulopathy of acute promyelocytic leukaemia revisited. Best Pract Res Clin Haematol. 2009;22(1):153–63.

    Article  CAS  PubMed  Google Scholar 

  648. Federici AB, D'Amicob EA. The Role of Von Willebrand Factor in the Hemostatic Defect of Acute Promyelocytic Leukemia. Leuk Lymphoma. 1998;31(5-6):491–9.

    Article  CAS  PubMed  Google Scholar 

  649. Runde V, Aul C, Heyll A, Schneider W. All-trans retinoic acid: not only a differentiating agent, but also an inducer of thromboembolic events in patients with M3 leukemia. Blood. 1992;79(2):534–5.

    CAS  PubMed  Google Scholar 

  650. Hashimoto S, Koike T, Tatewaki W, Seki Y, Sato N, Azegami T, et al. Fatal thromboembolism in acute promyelocytic leukemia during all-trans retinoic acid therapy combined with antifibrinolytic therapy for prophylaxis of hemorrhage. Leukemia. 1994;8(7):1113–5.

    CAS  PubMed  Google Scholar 

  651. Falanga A, Iacoviello L, Evangelista V, Belotti D, Consonni R, D'Orazio A, et al. Loss of blast cell procoagulant activity and improvement of hemostatic variables in patients with acute promyelocytic leukemia administered all-trans-retinoic acid. Blood. 1995;86(3):1072–81.

    CAS  PubMed  Google Scholar 

  652. Falanga A, Consonni R, Marchetti M, Mielicki WP, Rambaldi A, Lanotte M, et al. Cancer procoagulant in the human promyelocytic cell line NB4 and its modulation by all-trans-retinoic acid. Leukemia. 1994;8(1):156–9.

    CAS  PubMed  Google Scholar 

  653. Koyama T, Hirosawa S, Kawamata N, Tohda S, Aoki N. All-trans retinoic acid upregulates thrombomodulin and downregulates tissue-factor expression in acute promyelocytic leukemia cells: distinct expression of thrombomodulin and tissue factor in human leukemic cells. Blood. 1994;84(9):3001–9.

    CAS  PubMed  Google Scholar 

  654. Ishii H, Horie S, Kizaki K, Kazama M. Retinoic acid counteracts both the downregulation of thrombomodulin and the induction of tissue factor in cultured human endothelial cells exposed to tumor necrosis factor. Blood. 1992;80(10):2556–62.

    CAS  PubMed  Google Scholar 

  655. Medh RD, Santell L, Levin EG. Stimulation of tissue plasminogen activator production by retinoic acid: synergistic effect on protein kinase C-mediated activation. Blood. 1992;80(4):981–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  656. Lansink M, Kooistra T. Stimulation of tissue-type plasminogen activator expression by retinoic acid in human endothelial cells requires retinoic acid receptor beta 2 induction. Blood. 1996;88(2):531–41.

    CAS  PubMed  Google Scholar 

  657. Fenaux P, Chastang C, Chomienne C, Castaigne S, Sanz M, Link H, et al. Treatment of Newly Diagnosed Acute Promyelocytic Leukemia (APL) by All Transretinoic Acid (ATRA) Combined with Chemotherapy: The European Experience. Leuk Lymphoma. 1995;16(5-6):431–7.

    Article  CAS  PubMed  Google Scholar 

  658. Avvisati G, Lo-Coco F, Paoloni FP, Petti MC, Diverio D, Vignetti M, et al. AIDA 0493 protocol for newly diagnosed acute promyelocytic leukemia: very long-term results and role of maintenance. Blood. 2011;117(18):4716–25.

    Article  CAS  PubMed  Google Scholar 

  659. Asou N, Adachi K, Tamura J, Kanamaru A, Kageyama S, Hiraoka A, et al. Analysis of prognostic factors in newly diagnosed acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Japan Adult Leukemia Study Group. J Clin Oncol. 1998;16(1):78–85.

    Article  CAS  PubMed  Google Scholar 

  660. Fenaux P, Chastang C, Chevret S, Sanz M, Dombret H, Archimbaud E, et al. A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood. 1999;94(4):1192–200.

    CAS  PubMed  Google Scholar 

  661. Ades L, Guerci A, Raffoux E, Sanz M, Chevallier P, Lapusan S, et al. Very long-term outcome of acute promyelocytic leukemia after treatment with all-trans retinoic acid and chemotherapy: the European APL Group experience. Blood. 2010;115(9):1690–6.

    Article  CAS  PubMed  Google Scholar 

  662. de The H, Chen Z. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer. 2010;10(11):775–83.

    Article  PubMed  CAS  Google Scholar 

  663. Zhu J, Guo WM, Yao YY, Zhao WL, Pan L, Cai X, et al. Tissue factors on acute promyelocytic leukemia and endothelial cells are differently regulated by retinoic acid, arsenic trioxide and chemotherapeutic agents. Leukemia. 1999;13(7):1062–70.

    Article  CAS  PubMed  Google Scholar 

  664. Slack JL, Rusiniak ME. Current issues in the management of acute promyelocytic leukemia. Ann Hematol. 2000;79(5):227–38.

    Article  CAS  PubMed  Google Scholar 

  665. Alimoghaddam K, Ghavamzadeh A, Jahani M. Use of Novoseven for arsenic trioxide-induced bleeding in PML. Am J Hematol. 2006;81(9):720.

    Article  PubMed  Google Scholar 

  666. Zver S, Andoljsek D, Cernelc P. Effective treatment of life-threatening bleeding with recombinant activated factor VII in a patient with acute promyelocytic leukaemia. Eur J Haematol. 2004;72(6):455–6.

    Article  PubMed  Google Scholar 

  667. Matsushita T, Watanabe J, Honda G, Mimuro J, Takahashi H, Tsuji H, et al. Thrombomodulin alfa treatment in patients with acute promyelocytic leukemia and disseminated intravascular coagulation: a retrospective analysis of an open-label, multicenter, post-marketing surveillance study cohort. Thromb Res. 2014;133(5):772–81.

    Article  CAS  PubMed  Google Scholar 

  668. Lo-Cocco F, Di Donato L. Targeted therapy alone for acute promyelocytic leukemia. N Engl J Med. 2016;374:1197–8.

    Article  Google Scholar 

  669. Liu SS, Wang XP, Li XB, et al. Zoledronic acid exerts antitumor effects in NB4 acute promyelocytic leukemia cells by inducing apoptosis and S phase arrest. Biomed Pharmacother. 2014;68:1031–6.

    Article  CAS  PubMed  Google Scholar 

  670. Wang Y, Lin D, Wei H, et al. Long-term follow-up of homoharringtonine plus all-trans retinoic acid-based induction and consolidation therapy in newly diagnosed acute promyelocytic leukemia. Int J Hematol. 2015;101:279–85.

    Article  CAS  PubMed  Google Scholar 

  671. Patel S, Guerenne L, Gorombei P, et al. pVAX14DNA-mediated add-on immunotherapy combined with arsenic trioxide and all-trans retinoic acid targeted therapy effectively increases the survival of acute promyelocytic leukemia mice. Blood Cancer J. 2015;5:e374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  672. Ghanizadeh-Vesali S, Zekri A, Zaker F, et al. Significnace of AZD1152 as apotential treatment against Aurora B overexpression in acute promyelocytic leukemia. Ann Hematol. 2016;95:1031–42.

    Article  CAS  PubMed  Google Scholar 

  673. Ganesan S, Alex AA, Chendamarai E, et al. Rationale and efficacy of proteasome inhibitor combined with arsenic trioxide in the treatment of acute promyelocytic leukemia. Leukemia. 2016;30:2169–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  674. Zhang K, Li J, Meng W, et al. Tashinone IIA inhibits acute promyelocytic leukemia cell proliferation and induces apoptosis in vivo. Blood Cells Mol Dis. 2016;56:46–52.

    Article  CAS  PubMed  Google Scholar 

  675. Atashrazm F, Lowenthal RM, Dickinson JL, et al. Fucoidan enhances the therapeutic potential of arsenic trioxide and all-trans retinoic acid in acute promyelocytic leukemia in vitro and in vivo. Oncotarget. 2016;7:46028–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter H. Wiernik M.D., D.hc., FASCO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Wiernik, P.H., Gallagher, R.E., Tallman, M.S. (2018). Acute Promyelocytic Leukemia. In: Wiernik, P., Dutcher, J., Gertz, M. (eds) Neoplastic Diseases of the Blood. Springer, Cham. https://doi.org/10.1007/978-3-319-64263-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64263-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64262-8

  • Online ISBN: 978-3-319-64263-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics