Skip to main content

Visualization Techniques

  • Living reference work entry
  • First Online:
Encyclopedia of Big Data Technologies
  • 110 Accesses

Synonyms

Exploratory Data Analytics; Visual Data Exploration

Definitions

Visualization techniques for big data exploration, also known as visual data exploration (both terms will be used interchangeably in this article.), refer to a particular field of data visualization research that aims at devising and employing visualization techniques to aid the understanding of (extremely) large data sets (Keim 2001). These techniques evolved from the original concept of data visualization, which was originally defined as “the use of computer-supported, interactive, visual representations of abstract data to amplify cognition” (Card et al. 1999). The goal is thus to make information ready at hand so that people can make informed decisions in a timely fashion. The use of data visualization is often divided into two basic tasks (and tools thereof): data exploration and data representation. In data exploration, users are primarily concerned with investigating a data set in order to manipulate the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abello J, van Ham F (2004) Matrix zoom: a visual interface to semi-external graphs. In: IEEE symposium on information visualization, pp 183–190. https://doi.org/10.1109/INFVIS.2004.46

  • Ahlberg C, Shneiderman B. Visual information seeking: tight coupling of dynamic query filters with starfield displays. In: Baecker RM, Grudin J, Buxton WA, Greenberg S (eds) Readings in human–computer interaction, interactive technologies, 2nd edn, pp 450–456. Morgan Kaufmann (1995). https://doi.org/10.1016/B978-0-08-051574-8.50047-9. https:// www.sciencedirect.com/science/article/pii/B97800805 15748500479

  • Andrews C, Endert A, Yost B, North C (2011) Information visualization on large, high-resolution displays: issues, challenges, and opportunities. Inf Vis 10(4):341–355. https://colorado.idm.oclc.org/login?url=https://search. proquest.com/docview/1282260928?accountid=14503. Copyright – SAGE Publications Ⓒ Oct 2011; Document feature – Photographs; Tables; Illustrations; Last updated – 2014-12-11

  • Becker RA, Cleveland WS (1987) Brushing scatterplots. Technometrics 29(2):127–142. https://doi.org/10.1080/00401706.1987.10488204. https://amstat.tandfonline.com/doi/abs/10.1080/00401706.1987.10488204

  • Bertini E, Santucci G (2006) Give chance a chance: modeling density to enhance scatter plot quality through random data sampling. Inf Vis 5(2):95–110. https://doi.org/10.1057/palgrave.ivs.9500122

  • Bieh-Zimmert O, Felden C (2014) Shaping unlimited patterns: a vision for state-of-the-art visual scalability. In: Proceedings of the 6th international conference on management of emergent digital EcoSystems (MEDES’14). ACM, New York, pp 13:72–13:77. https://doi.org/10.1145/2668260.2668279

  • Bikakis N, Liagouris J, Krommyda M, Papastefanatos G, Sellis T: GraphVizdb: a scalable platform for interactive large graph visualization. In: 2016 IEEE 32nd international conference on data engineering (ICDE), pp 1342–1345 (2016). https://doi.org/10.1109/ICDE.2016.7498340

  • Buja A, Cook D, Scientist DFSR (1996) Interactive high-dimensional data visualization. J Comput Graph Stat 5(1):78–99. https://doi.org/10.1080/10618600.1996.10474696. https://www.tandfonline.com/doi/abs/10.1080/10618600.1996.10474696

  • Card SK, Mackinlay JD, Shneiderman B (1999) Readings in information visualization: using vision to think. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Carr DB, Littlefield RJ, Nicholson WL, Littlefield JS (1987) Scatterplot matrix techniques for large N. J Am Stat Assoc 82(398):424–436. https://doi.org/10.1080/01621459.1987.10478445

  • Chen C (2005) Top 10 unsolved information visualization problems. IEEE Comput Graph Appl 25(4):12–16. https://doi.org/10.1109/MCG.2005.91

  • Choo J, Park H (2013) Customizing computational methods for visual analytics with big data. IEEE Comput Graph Appl 33(4):22–28. https://doi.org/10.1109/MCG.2013.39

  • Cook KA, Thomas JJ (2005) Illuminating the path: the research and development agenda for visual analytics. Technical report, Pacific Northwest National Lab.(PNNL), Richland

    Google Scholar 

  • Eick SG, Karr AF (2002) Visual scalability. J Comput Graph Stat 11(1):22–43. https://doi.org/10.1198/106186002317375604

  • Ellis G, Dix A (2007) A taxonomy of clutter reduction for information visualisation. IEEE Trans Vis Comput Graph 13(6):1216–1223. https://doi.org/10.1109/TVCG.2007.70535

  • Elmqvist N, Fekete JD (2010) Hierarchical aggregation for information visualization: overview, techniques, and design guidelines. IEEE Trans Vis Comput Graph 16(3):439–454. https://doi.org/10.1109/TVCG.2009.84

  • Elmqvist N, Do TN, Goodell H, Henry N, Fekete JD (2008) Zame: interactive large-scale graph visualization. In: 2008 IEEE Pacific visualization symposium, pp 215–222. https://doi.org/10.1109/PACIFICVIS.2008.4475479

  • Guo D (2003) Coordinating computational and visual approaches for interactive feature selection and multivariate clustering. Inf Vis 2(4):232–246. https://doi.org/10.1057/palgrave.ivs.9500053

  • Heer J, Kandel S (2012) Interactive analysis of big data. XRDS 19(1):50–54. https://doi.org/10.1145/2331042.2331058

  • Heer J, Viégas FB, Wattenberg M (2007) Voyagers and voyeurs: supporting asynchronous collaborative information visualization. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI’07). ACM, New York, pp 1029–1038. https://doi.org/10.1145/1240624.1240781

  • Herman I, Melancon G, Marshall MS (2000) Graph visualization and navigation in information visualization: a survey. IEEE Trans Vis Comput Graph 6(1):24–43. https://doi.org/10.1109/2945.841119

  • Inselberg A, Dimsdale B (1987) Parallel Coordinates for Visualizing Multi-Dimensional Geometry. In: Kunii TL (ed) Computer Graphics 1987. Springer, Tokyo

    Google Scholar 

  • Inselberg A, Dimsdale B (1990) Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proceedings of the first IEEE conference on visualization: Visualization’90, pp 361–378. https://doi.org/10.1109/VISUAL.1990.146402

  • Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323. https://doi.org/10.1145/331499.331504

  • Johnson B, Shneiderman B (1991) Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proceedings of the 2nd conference on visualization’91 (VIS’91). IEEE Computer Society Press, Los Alamitos, pp 284–291. http://dl.acm.org/citation.cfm?id=949607.949654

  • Keim DA (2000) Designing pixel-oriented visualization techniques: theory and applications. IEEE Trans Vis Comput Graph 6(1):59–78. https://doi.org/10.1109/2945.841121

  • Keim DA (2001) Visual exploration of large data sets. Commun ACM 44(8):38–44. https://doi.org/10.1145/381641.381656

  • Keim DA, Mansmann F, Schneidewind J, Ziegler H (2006) Challenges in visual data analysis. In: Tenth international conference on information visualisation (IV’06), pp 9–16. https://doi.org/10.1109/IV.2006.31

  • Keim DA, Mansmann F, Oelke D, Ziegler H (2008a) Visual analytics: combining automated discovery with interactive visualizations. In: Jean-Fran JF, Berthold MR, Horváth T (eds) Discovery science. Springer, Berlin/Heidelberg, pp 2–14

    Google Scholar 

  • Keim DA, Mansmann F, Schneidewind J, Thomas J, Ziegler H (2008b) Visual analytics: scope and challenges. In: Simoff SJ, Böhlen MH, Mazeika A (eds) Visual data mining: theory, techniques and tools for visual analytics. Springer, Berlin/Heidelberg, pp 76–90

    Google Scholar 

  • Lamping J, Rao R, Pirolli P (1995) A focus+context technique based on hyperbolic geometry for visualizing large hierarchies. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI’95). ACM Press/Addison-Wesley Publishing Co., New York, pp 401–408. https://doi.org/10.1145/223904.223956

  • Leskovec J, Horvitz E (2008) Planetary-scale views on a large instant-messaging network. In: Proceedings of the 17th international conference on world wide web (WWW’08). ACM, New York, pp 915–924. https://doi.org/10.1145/1367497.1367620

  • Liu Z, Jiang B, Heer J (2013) Immens: real-time visual querying of big data. Comput Graph Forum 32(3pt4):421–430. https://doi.org/10.1111/cgf.12129

  • Liu S, Maljovec D, Wang B, Bremer PT, Pascucci V (2015) Visualizing high-dimensional data: advances in the past decade. In: Proceeding of eurographics conference on visualization, pp 20151,115–127

    Google Scholar 

  • Meirelles I (2013) Design for information: an introduction to the histories, theories, and best practices behind effective information visualizations. Rockport Publishers. https://books.google.com.br/books?id=RFb0AwAAQBAJ

  • Mukherjea S, Foley JD, Hudson S (1995) Visualizing complex hypermedia networks through multiple hierarchical views. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI’95). ACM Press/Addison-Wesley Publishing Co., New York, pp 331–337. https://doi.org/10.1145/223904.223947

  • Nocke T, Schlechtweg S, Schumann H (2005) Icon- based visualization using mosaic metaphors. In: Ninth international conference on information vis- ualisation (IV’05), pp 103–109. https://doi.org/10. 1109/IV.2005.58

  • North C, Shneiderman B (2000) Snap-together visualization: a user interface for coordinating visualizations via relational schemata. In: Proceedings of the working conference on advanced visual interfaces (AVI’00). ACM, New York, pp 128–135. https://doi.org/10.1145/345513.345282

  • Novotny M, Hauser H (2006) Outlier-preserving focus+context visualization in parallel coordinates. IEEE Trans Vis Comput Graph 12(5):893–900. https://doi.org/10.1109/TVCG.2006.170

  • Olshannikova E, Ometov A, Koucheryavy Y, Olsson T (2015) Visualizing big data with augmented and virtual reality: challenges and research agenda. J Big Data 2(1):22. https://doi.org/10.1186/s40537-015-0031-2

  • Reda K, Febretti A, Knoll A, Aurisano J, Leigh J, Johnson A, Papka ME, Hereld M (2013) Visualizing large, heterogeneous data in hybrid-reality environments. IEEE Comput Graph Appl 33(4):38–48. https://doi.org/10.1109/MCG.2013.37

  • Shneiderman B (2003) The eyes have it: a task by data type taxonomy for information visualizations. In: Bederson BB, Shneiderman B (eds) The craft of information visualization, interactive technologies. Morgan Kaufmann, San Francisco, pp 364–371. https://doi.org/10.1016/B978-155860915-0/50046-9. https://www.sciencedirect.com/science/article/pii/B9781558609150500469

  • Shneiderman B (2008) Extreme visualization: squeezing a billion records into a million pixels. In: Proceedings of the 2008 ACM SIGMOD international conference on management of data (SIGMOD’08). ACM, New York, pp 3–12. https://doi.org/10.1145/1376616.1376618

  • Sun GD, Wu YC, Liang RH, Liu SX (2013) A survey of visual analytics techniques and applications: state-of-the-art research and future challenges. J Comput Sci Tech 28(5):852–867

    Google Scholar 

  • Thomas JJ, Cook KA (2006) A visual analytics agenda. IEEE Comput Graph Appl 26(1):10–13. https://doi.org/10.1109/MCG.2006.5

  • Ward MO (2002) A taxonomy of glyph placement strategies for multidimensional data visualization. Inf Vis 1(3–4):194–210. https://doi.org/10.1057/PALGRAVE.IVS.9500025

  • Ward MO (2008) Multivariate data glyphs: principles and practice. In: Handbook of data visualization. Springer, Berlin/Heidelberg, pp 179–198. https://doi.org/10.1007/978-3-540-33037-0_8

  • Ward MO (2009) Linking and brushing. In: Liu L, Özsu MT (eds) Encyclopedia of database systems. Springer, Boston, pp 1623–1626

    Google Scholar 

  • Wong PC, Shen HW, Johnson CR, Chen C, Ross RB (2012) The top 10 challenges in extreme-scale visual analytics. IEEE Comput Graph Appl 32(4):63–67. https://doi.org/10.1109/MCG.2012.87

  • Yang J, Ward MO, Rundensteiner EA, Huang S (2003) Visual hierarchical dimension reduction for exploration of high dimensional datasets. In: Proceedings of the symposium on data visualisation 2003 (VISSYM’03). Eurographics Association, Aire-la-Ville, pp 19–28. http://dl.acm.org/citation.cfm?id=769922.769924

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rogério Abreu de Paula .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de Paula, R.A. (2018). Visualization Techniques. In: Sakr, S., Zomaya, A. (eds) Encyclopedia of Big Data Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-63962-8_84-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63962-8_84-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63962-8

  • Online ISBN: 978-3-319-63962-8

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics