Skip to main content

Titanium Dioxide Nanoparticles and Nanotubular Surfaces: Potential Applications in Nanomedicine

  • Chapter
  • First Online:

Abstract

Titanium dioxide nanotubes and nanoparticles are believed to be stable, possess antibacterial properties, and biocompatible and less toxic than other nanostructures, making them excellent candidates for biomedical applications. Among others, they have been widely used as drug-delivery systems, components for articulating orthopaedic implants or cosmetics for dermatological and skin lesion treatments. However, when exposed to the biological environment, selective proteins and ions may adsorb to the nanostructures creating a dynamic nano-bio interface that mediate a cellular response. This complex nano-bio interface depends on the physical-chemical characteristics of the nanostructures as well as the specific biological environment. In this chapter, the formation of these biocomplexes (protein and ions) is discussed together with its impact on cellular behaviour. Finally, the potential application of TiO2 nanoparticles and nanotubes in nanomedicine will be addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aziz H, Awaad A. Titanium dioxide (TiO2) nanoparticles induced apoptosis of splenocytes in adult male albino rat and the protective role of milk thistle seeds extract. Int J Adv Res. 2014;2:732–46.

    Google Scholar 

  • Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S. Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res. 2010;92:1218–24.

    Google Scholar 

  • Borgognoni CF, Mormann M, Qu Y, Schäfer M, Langer K, Öztürk C, Wagner S, Chen C, Zhao Y, Fuchs H, Riehemann K. Reaction of human macrophages on protein corona covered Tio2 nanoparticles. Nanomedicine. 2015;2:275–82.

    Article  Google Scholar 

  • Brammer KS, Frandsen CJ, Jin S. TiO2 nanotubes for bone regeneration. Trends Biotechnol. 2012;30:315–22.

    Article  CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17.

    Article  PubMed  Google Scholar 

  • Campoccia D, Montanaro L, Arciola CR. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 2013;34:8533–54.

    Article  CAS  PubMed  Google Scholar 

  • Caracciolo G, Farokhzad OC, Mahmoudi M. Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol. 2017;35:257–64.

    Article  CAS  PubMed  Google Scholar 

  • Carreira ACO, Zambuzzi WF, Rossi MC, Filho RA, Sogayar MC, Granjeiro JM. Bone morphogenetic proteins: promising molecules for bone healing, bioengineering, and regenerative medicine. Vitam Horm. 2015;99:293–322.

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Zhang Z, Ouyang J, Chen X, Xu Z. Bioactivity and osteogenic cell response of TiO2 nanotubes coupled with nanoscale calcium phosphate via ultrasonification-assisted electrochemical deposition. Appl Surf Sci. 2014;305:24–32.

    Article  CAS  Google Scholar 

  • Chug A, Shukla S, Mahesh L, Jadwani S. Osseointegration—molecular events at the bone–implant interface: a review. J Oral Maxillofac Surg Med Pathol. 2013;25:1–4.

    Article  Google Scholar 

  • Deng ZJ, Mortimer G, Schiller T, Musumeci A, Martin D, Minchin RF. Differential plasma protein binding to metal oxide nanoparticles. Nanotechnology. 2009;20:455101.

    Article  PubMed  Google Scholar 

  • Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48:53–229.

    Article  CAS  Google Scholar 

  • Faure B, Salazar-Alvarez G, Ahniyaz A, Villaluenga I, Berriozabal G, De Miguel YR, Bergström L. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Sci Technol Adv Mater. 2013;14:023001–24.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng T, Xufeng N, Xiaoming L, Qingling F, Yubo F. Porous poly(L-lactic acid) scaffold reinforced by titanium dioxide nanoparticles. J Biomat Tissue Eng. 2016;6(6):478–483.

    Google Scholar 

  • Flak D, Coy E, Nowaczyk G, Yate L, Jurga S. Tuning the photodynamic efficiency of TiO2 nanotubes against HeLa cancer cells by Fe-doping. RSC Adv. 2015;5:85139–52.

    Article  CAS  Google Scholar 

  • Frandsen CJ, Brammer KS, Noh K, Johnston G, Sungho J. Tantalum coating on TiO2 nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts. Mater Sci Eng C Mate Biol Appl. 2014;37:332–41.

    Article  CAS  Google Scholar 

  • Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, Boyan B. A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater. 2014;10:2907–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulati K, Ramakrishnan S, Aw MS, Atkins GJ, Findlay DM, Losic D. Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater. 2012;8:449–56.

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Reviakine I. Platelet activation profiles on TiO2: effect of Ca2+ binding to the surface. Biointerphases. 2012;7:1–12.

    Article  Google Scholar 

  • Gutwein LG, Webster TJ. Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. Biomaterials. 2004;25:4175–83.

    Article  CAS  PubMed  Google Scholar 

  • Heringa MB, Geraets L, van Eijkeren JCH, Vandebriel RJ, de Jong WH, Oomen AG. Risk assessment of titanium dioxide nanoparticles via oral exposure, including toxicokinetic considerations. Nanotoxicology. 2016;11:1–11.

    Google Scholar 

  • Hou Y, Cai K, Li J, Chen X, Lai M, Hu Y, Uo Z, Ding X, Xu D. Effects of titanium nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells. Int J Nanomedicine. 2013;8:3619–30.

    PubMed  PubMed Central  Google Scholar 

  • Indira K, Mudali UK, Rajendran N. In-vitro biocompatibility and corrosion resistance of strontium incorporated TiO2 nanotube arrays for orthopaedic applications. J Biomater Appl. 2014;1:113–29.

    Article  Google Scholar 

  • Jaeger A, Weiss DG, Jonas L, Kriehuber R. Oxidative stress-induced cytotoxic and genotoxic effects of nano-sized titanium dioxide particles in human HaCaT keratinocytes. Toxicology. 2012;296:27–36.

    Article  CAS  PubMed  Google Scholar 

  • Jesline A, John NP, Narayanan PM, Vani C, Murugan S. Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. Appl Nanosci. 2014;5:157–62.

    Article  Google Scholar 

  • Jesline et al 2015: A. JeslineNeetu P. JohnP. M. NarayananC. VaniSevanan Muruga, Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus,Appl Nanosci (2015) 5:157–162.

    Google Scholar 

  • Jin Xie, Seulki Lee, and Xiaoyuan Chen, Nanoparticle-based theranostic agents, Adv Drug Deliv Rev. 2010 August 30; 62(11): 1064–1079. doi:10.1016/j.addr.2010.07.009.

    Google Scholar 

  • Jha AK, Prasad K, Kulkarni AR. Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B: Biointerfaces. 2009;71:226–9.

    Article  CAS  PubMed  Google Scholar 

  • Kendall M, Lynch I. Long-term monitoring for nano- medicine implants and drugs. Nat Nanotecnol. 2016;1:206–10.

    Article  Google Scholar 

  • Khoshroo K, Jafarzadeh Kashi TS, Moztarzadeh F, Tahriri M, Jazayeri HE, Tayebi L. Development of 3D PCL microsphere/TiO2 nanotube composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl. 2017;1:586–98.

    Article  Google Scholar 

  • Kulkarni M, Mazare A, Gongadze E, Perutkova Š, Kralj-Iglič V, Milošev I, Schmuki P, Iglic A, Mozetic M. Titanium nanostructures for biomedical applications. Nanotechnology. 2015;22:1–18.

    Google Scholar 

  • Kulkarni M, Mazare A, Park J, Gongadze E, Killian MS, Kralj S, Von der Mark K, Iglič A, Schmuki P. Protein interactions with layers of TiO2 nanotube and nanopore arrays: morphology and surface charge influence. Acta Biomater. 2016;45:357–66.

    Article  CAS  PubMed  Google Scholar 

  • Kumeria T, Mon H, Aw MS, Gulati K, Santos A, Griesser HJ, Losic D. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties. Colloids Surf B: Biointerfaces. 2015;30:255–63.

    Article  Google Scholar 

  • L'Azou B, Jorly J, On D, Sellier E, Moisan F, Fleury-Feith J, Cambar J, Brochard P, Ohayon-Courtès C. In vitro effects of nanoparticles on renal cells. Part Fibre Toxicol. 2008;5:22–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Xu L, Zhang T, Ren G, Yang Z. Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology. 2010;12:172–7.

    Article  Google Scholar 

  • Lucky SS, Idris NM, Huang K, Kim J, Li Z, Thong PSP, Xu R, Soo KC, Zhang Y. In vivoBiocompatibility, biodistribution and therapeutic efficiency of Titania coated Upconversion nanoparticles for photodynamic therapy of solid oral cancers. Theranostics. 2016;6:1844–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lv L, Liu Y, Zhang P, Zhang X, Liu J, Chen T, Su P, Li H, Zhou Y. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials. 2015;39:193–205.

    Article  CAS  PubMed  Google Scholar 

  • Mathew MT, Srinivasa Pai P, Pourzal R, Fischer A, Wimmer MA. Significance of Tribocorrosion in biomedical applications: overview and current status. Adv Tribol. 2009;9:1–12.

    Article  Google Scholar 

  • Mazare A, Totea G, Burnei C, Schmuki P, Demetrescu I, Ionita D. Corrosion, antibacterial activity and haemocompatibility of TiO2 nanotubes as a function of their annealing temperature. Corros Sci. 2016;103:215–22.

    Article  CAS  Google Scholar 

  • Meena R, Rani M, Pal R, Rajamani P. Nano-TiO2-induced apoptosis by oxidative stress-mediated DNA damage and activation of p53 in human embryonic kidney cells. Appl Biochem Biotechnol. 2012;67:791–808.

    Article  Google Scholar 

  • Moghimi SM, Farhangrazi ZS. Nanomedicine and the complement paradigm. Nanomedicine: nanotechnology, biology and medicine. Elsevier. 2013;9:458–60.

    CAS  Google Scholar 

  • Nakayama M, Sasaki R, Ogino C, Tanaka T, Morita K, Umetsu M. Titanium peroxide nanoparticles enhanced cytotoxic effects of X-ray irradiation against pancreatic cancer model through reactive oxygen species generation in vitro and in vivo. Radiat Oncol. 2016;11:91–1.

    Google Scholar 

  • Oh S, Brammer KS, Li YSJ, Teng D, Engler AJ, Chien S, Sungho J. Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci. 2009;106:2130–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pattanayak DK, Yamaguchi S, Matsushita T, Nakamura T, Kokubo T. Apatite-forming ability of titanium in terms of pH of the exposed solution. J R Soc Interface. 2012;9:2145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasad RY, Simmons SO, Killius MG, Zucker RM, Kligerman AD, Blackman CF, Fry RC, Demarini DM. Cellular interactions and biological responses to titanium dioxide nanoparticles in HepG2 and BEAS-2B cells: role of cell culture media. Environ Mol Mutagen. 2014;55:336–42.

    Article  CAS  PubMed  Google Scholar 

  • Radad K, Al-Shraim M, Moldzio R, Rausch W-D. Recent advances in benefits and hazards of engineered nanoparticles. Environ Toxicol Pharmacol. 2012;34:661–72.

    Article  CAS  PubMed  Google Scholar 

  • Regonini D, Jaroenworaluck A, Stevens R, Bowen CR. Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition. Surf Interface Anal. 2010;42:139–44.

    Article  CAS  Google Scholar 

  • Ribeiro AR, Gemini-Piperni S, Travassos R, Lemgruber L, Silva RC, Rossi AL, Farina M, Anselme K, Shokuhfar T, Shahbazian-Yassar R, Borojevic R, Rocha LA, Werckmann J, Granjeiro JM. Trojan-like internalization of Anatase titanium dioxide nanoparticles by human osteoblast cells. Sci Rep. 2016;6:23615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roguska A, Belcarz A, Pisarek M, Ginalska G, Lewandowska M. TiO2 nanotube composite layers as delivery system for ZnO and Ag nanoparticles – an unexpected overdose effect decreasing their antibacterial efficacy. Mat Sci Eng C. 2015;51:158–66.

    Article  CAS  Google Scholar 

  • Roy P, Berger S, Schmuki P. TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed Engl. 2011;50:2904–39.

    Article  CAS  PubMed  Google Scholar 

  • Rozhkova EA, Ulasov I, Lai B, Dimitrijevic NM, Lesniak MS, Rajh T. A high-performance nanobio photocatalyst for targeted brain cancer therapy. Nano Lett. 2009;9:3337–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruh H, Kühl B, Brenner-Weiss G, Hopf C, Diabaté S, Weiss C. Identification of serum proteins bound to industrial nanomaterials. Toxicol Lett. 2012;208:41–50.

    Article  CAS  PubMed  Google Scholar 

  • Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;4:743–65.

    Article  CAS  PubMed  Google Scholar 

  • Sang X, Li B, Ze Y, Hong J, Ze X, Gui S, Liu H, Zhao X, Sheng L, Liu D, Yu X, Wang L, Hong F. Toxicological mechanisms of nanosized titanium dioxide-induced spleen injury in mice after repeated peroral application. J Agric Food Chem. 2013;61:5590–9.

    Article  CAS  PubMed  Google Scholar 

  • Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol BioMed. 2013;11:26.

    Article  CAS  Google Scholar 

  • Senzui M, Tamura T, Miura K, Ikarashi Y, Watanabe Y, Fujii M. Study on penetration of titanium dioxide (TiO2) nanoparticles into intact and damaged skin in vitro. J Toxicol Sci. 2010;35:107–13.

    Article  CAS  PubMed  Google Scholar 

  • Seo J-W, Chung H, Kim M-Y, Lee J, Choi I-H, Cheon J. Development of water-soluble single-crystalline TiO2 nanoparticles for photocatalytic cancer-cell treatment. Small. 2007;3:850–3.

    Article  CAS  PubMed  Google Scholar 

  • Shen F, Zhu Y, Li X, Luo R, Tu Q, Wang J. Vascular cell responses to ECM produced by smooth muscle cells on TiO2 nanotubes. Appl Surf. 2015;349:589–98.

    Article  CAS  Google Scholar 

  • Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol. 2013;l10:15.

    Article  Google Scholar 

  • Shukla RK, Kumar A, Gurbani D, Pandey AK, Singh S, Dhawan A. TiO2 nanoparticles induce oxidative DNA damage and apoptosis in human liver cells. Nanotoxicology. 2012;7:48–60.

    Article  Google Scholar 

  • Simchi A, Mazaheri M, Eslahi N, Ordikhani F, Tamjid E. Nanomedicine applications in orthopedic medicine: state of the art. Int J Nanomedicine. 2015;10:6039–53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taurozzi JS, Hackley VA, Wiesner MR. A standardised approach for the dispersion of titanium dioxide nanoparticles in biological media. Nanotoxicology. 2013;7:389–401.

    Article  CAS  PubMed  Google Scholar 

  • Tian A, Qin X, Wu A, Zhang H, Xu Q, Xing D, He Y, Qiu B, Xue X, Zhang D, Dong C. Nanoscale TiO2 nanotubes govern the biological behavior of human glioma and osteosarcoma cells. Int J Nanomed. 2015;10:2423–39.

    Article  CAS  Google Scholar 

  • Vasconcelos DM, Santos SG, Lamghari M, Barbosa MA. The two faces of metal ions: from implants rejection to tissue repair/regeneration. Biomaterials. 2016;22:1–47.

    Google Scholar 

  • Vinardell M, Mitjans M. Antitumor activities of metal oxide nanoparticles. Nano. 2015;5:1004–21.

    CAS  Google Scholar 

  • Wang Y, Cui H, Zhou J, Li F, Wang J, Chen M. CytotoxicityDNA damage, and apoptosis induced by titanium dioxide nanoparticles in human non-small cell lung cancer A549 cells. Environ Sci Pollut Res. 2014;22:5519–30.

    Article  Google Scholar 

  • Wang C, Bai Y, Bai Y, Gao J, Ma W. Enhancement of corrosion resistance and bioactivity of titanium by Au nanoparticle-loaded TiO2 nanotube layer. Surf Coatings Technol. 2016a;286:327–34.

    Article  CAS  Google Scholar 

  • Wang J, Li H, Sun Y, Bai B, Zhang Y. Anodization of highly ordered TiO2 nanotube arrays using orthogonal design and its wettability. Int J Electrochem. 2016b;11:710–23.

    Article  CAS  Google Scholar 

  • Wilmowsky von C, Bauer S, Lutz R, Meisel M, Neukam FW, Toyoshima T, Nkenke E, Schlegel KA. In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. J Biome Mater Res Part B Appl Biomater. 2009;89:165–71.

    Article  Google Scholar 

  • Younes NRB, Amara S, Mrad I, Ben-Slama I, Jeljeli M, Omri K, Ghoul E, Rhouma KB, Abdelmelek H, Sakly M. Subacute toxicity of titanium dioxide (TiO2) nanoparticles in male rats: emotional behavior and pathophysiological examination. Environ Sci Pollut Res. 2015;22:8728–37.

    Article  Google Scholar 

  • Zeng L, Pan Y, Tian Y, Wang X, Ren W, Wang S, Lu G, Wu A. Doxorubicin-loaded NaYF4:Yb/Tm-TiO2 inorganic photosensitizers for NIR-triggered photodynamic therapy and enhanced chemotherapy in drug-resistant breast cancers. Biomaterials. 2015;57(C):93–106.

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009;4:66–80.

    Article  CAS  Google Scholar 

  • Zhang L, Zeng L, Pan Y, Luo S, Ren W, Gong A, Ma X, Liang H, Lu G, Wu A. Inorganic photosensitizer coupled Gd-based up conversion luminescent nanocomposites for in vivo magnetic resonance imaging and near-infrared-responsive photodynamic therapy in cancers. Biomaterials. 2015;44:82–90.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Howe JLC, Yu Z, Leong DT, Chu JJH, Loo JSC, Ng KW. Exposure to titanium dioxide nanoparticles induces autophagy in primary human keratinocytes. Small. 2013;9:387–92.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Rosa Ribeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ribeiro, A.R., Gemini-Piperni, S., Alves, S.A., Granjeiro, J.M., Rocha, L.A. (2017). Titanium Dioxide Nanoparticles and Nanotubular Surfaces: Potential Applications in Nanomedicine. In: Rai, Ph.D, M., Shegokar, Ph.D, R. (eds) Metal Nanoparticles in Pharma. Springer, Cham. https://doi.org/10.1007/978-3-319-63790-7_6

Download citation

Publish with us

Policies and ethics