Skip to main content

Metal and Metal Oxide Nanoparticles in Photoinactivation of Pathogens

  • Chapter
  • First Online:
Metal Nanoparticles in Pharma

Abstract

Bacterial infections pose serious health problem that has drawn public attention worldwide. Increased outbreak and infections of pathogenic strains, bacterial antibiotic resistance, emergence of new bacterial mutations, lack of suitable vaccine and nosocomial infections are global health hazard to human. Over the last few years, the increased attention of the researchers was directed to questions related to the biomedical use of different nanoparticles. Nanotechnology is a research hot spot in modern materials science. This technology can provide new applications that range from innovative fabric compounds, food processing and agricultural production to medicinal techniques.

This chapter summarizes the experimental results of the effect of metal (like silver, gold) and metal oxide nanoparticles (like zinc oxide or titanic oxide) and quantum dots on the microorganisms under light exposure. The following sections discuss the properties of gold nanoparticles in photothermal killing of various pathogens, the ability of the conjugates of magnetic and plasmon-resonance nanoparticles with dyes, porphyrins and phthalocyanines to kill microorganisms as well as photocatalytic properties of ZnO and TiO2 in inactivation of microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alves E, Rodrigues JMM, Faustino MAF, Neves MGPMS, Cavaleiro JAS, Lin Z, Cunha A, Nadais MH, Tome JPC. A new insight on nanomagneteporphyrin hybrids for photodynamic inactivation of microorganisms. Dyes Pigments. 2014;110:80–8.

    Article  CAS  Google Scholar 

  • Ann LC, Mahmud S, Bakhori SKM, Sirelkhatim A, Mohamad D, Hasan H, Seeni A, Rahman RA. Effect of surface modification and UVA photoactivation on antibacterial bioactivity of zinc oxide powder. Appl Surf Sci. 2014;292:405–12.

    Article  CAS  Google Scholar 

  • Aponiene K, Luksiene Z. Effective combination of LED-based visible light, photosensitizer and photocatalyst to combat gram (−) bacteria. J Photochem Photobiol B Biol. 2015;142:257–63.

    Article  CAS  Google Scholar 

  • Bacsa R, Kiwi J, Ohno T, Albers P, Nadtochenko V. Preparation, testing and characterization of doped TiO2 active in the peroxidation of biomolecules under visible light. J Phys Chem B. 2005;109:5994–6003.

    Article  CAS  PubMed  Google Scholar 

  • Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y. Quantum dots as photosensitizers? Nat Biotechnol. 2004;22:1360–1.

    Article  CAS  PubMed  Google Scholar 

  • Baruah S, Mahmood MA, Myint MTZ, Bora T, Dutta J. Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods. Beilstein J Nanotechnol. 2010;1:14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohrer FI, Colesniuc CN, Park J, Ruidiaz ME, Schuller IK, Kummel AC, Trogler WC. Comparative gas sensing in cobalt, nickel, copper, zinc, and metal-free phthalocyanine chemiresistors. J Am Chem Soc. 2009;131:478–85.

    Article  CAS  PubMed  Google Scholar 

  • Bonnett R. Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev. 1995;24:19–33.

    Article  CAS  Google Scholar 

  • Braun A, Tcherniac J. Über die Produkte der Einwirkung von Acetanhydrid auf Phthalamid. Ber Dtsch Chem Ges. 1907;40:2709–14.

    Article  CAS  Google Scholar 

  • Bucharskaya A, Maslyakova G, Terentyuk G, Yakunin A, Avetisyan Y, Bibikova O, Tuchina E, Khlebtsov B, Khlebtsov N, Tuchin V. Towards effective photothermal/photodynamic treatment using plasmonic gold nanoparticles. Int J Mol Sci. 2016;17:1295.

    Article  PubMed Central  Google Scholar 

  • Bui TH, Felix C, Pigeot-Remy S, Herrmann JM, Lejeune P, Guillard C. Photocatalytic inactivation of wild and hyper-adherent E. coli strains in presence of suspended or supported TiO2. Influence of the isoelectric point of the particle size and of the adsorptive properties of titania. J Adv Oxid Technol. 2008;11:510–8.

    CAS  Google Scholar 

  • Caminos DA, Spesia MB, Pons P, Durantini EN. Mechanisms of Escherichia coli photodynamic inactivation by an amphiphilic tricationic porphyrin and 5,10,15,20-tetra(4-N,N,N-trimethylammoniumphenyl) porphyrin. J Photochem Photobiol. 2008;7:1071–8.

    Article  CAS  Google Scholar 

  • Carvalho CMB, Alves E, Costa L, Tome JPC, Faustino MAF, Neves MGPM, Tome A, Cavaleiro JAS, Almeida A, Cunha A, Lin Z, Rocha J. Functional cationic nanomagnet-porphyrin hybrids for the photoinactivation of microorganisms. ACS Nano. 2010;4:7133–40.

    Article  CAS  PubMed  Google Scholar 

  • Carvalho CMB, Gomes ATPC, Fernandes SCD, Prata ACB, Almeida MA, Cunha MA, Tome JPC, Faustino MAF, Neves MGPM, Tome A. Photoinactivation of bacteria in wastewater by porphyrins: bacterial-galactosidase activity and leucine-uptake as methods to monitor the process. J Photochem Photobiol B Biol. 2007;88:112–8.

    Article  CAS  Google Scholar 

  • Chong Y, Ge C, Fang G, Tian X, Ma X, Wen T, Wamer WG, Chen C, Chai Z, Yin JJ. Crossover between anti- and pro-oxidant activities of graphene quantum dots in the absence or presence of light. ACS Nano. 2016;10:8690–9.

    Article  CAS  PubMed  Google Scholar 

  • Darabpour E, Kashef N, Amini SM, Kharrazi S, Gholamreza ED. Fast and effective photodynamic inactivation of 4-day-old biofilm of methicillin-resistant Staphylococcus aureus using methylene blue-conjugated gold nanoparticles. J Drug Deliv Sci Technol. 2017;37:134–40.

    Article  CAS  Google Scholar 

  • De Diesbach H, Von der Weid E. Quelques Sels Complexes des o-dinitriles avec le cuivre et la pyridine. Helv Chim Acta. 1927;10:886–8.

    Article  Google Scholar 

  • Ding R, Yu X, Wang P, Zhang J, Zhou Y, Cao X, Tang H, Ayres N, Zhang P. Hybrid photosensitizer based on amphiphilic block copolymer stabilized silver nanoparticles for highly efficient photodynamic inactivation of bacteria. RSC Adv. 2016;6:20392–8.

    Article  CAS  Google Scholar 

  • Di Palma MA, Alvarez MG, Ochoa AL, Milanesio ME, Durantini EN. Optimization of cellular uptake of zinc(II) 2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]phthalocyanine for maximal photoinactivation of Candida albicans. Fungal Biol. 2013;117:744–51.

    Article  PubMed  CAS  Google Scholar 

  • Erkan A, Bakir U, Karakas G. Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J Photochem Photobiol A Chem. 2006;184:313–21.

    Article  CAS  Google Scholar 

  • Es-Souni M, Fischer-Brandies H, Es-Souni M. Versatile nanocomposite coatings with tunable cell adhesion and bactericidity. Adv Funct Mater. 2008;18:3179–88.

    Article  CAS  Google Scholar 

  • Fan Z, Lu JG. Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol. 2005;5:1561–73.

    Article  CAS  PubMed  Google Scholar 

  • Fiedot M, Maliszewska I, Rac-Rumijowska O, Suchorska-Wożniak P, Lewińska A, Teterycz H. The relationship between the mechanism of zinc oxide crystallization and its antimicrobial properties for the surface modification of surgical meshes. Materials. 2017;10:353.

    Article  PubMed Central  Google Scholar 

  • Fisher BR, Eisler HJ, Scott NE, Bawendi MG. Emission intensity dependence and single-exponential behavior in single colloidal quantum dot fluorescence lifetimes. J Phys Chem B. 2004;108:143–8.

    Article  CAS  Google Scholar 

  • Gerrity D, Ryu H, Crittenden J, Abbaszadegan M. Photocatalytic inactivation of viruses using titanium dioxide nanoparticles and low-pressure UV light. J Environ Sci Health – Part A Toxic/Hazard Subst Environ Eng. 2008;43:1261–70.

    Article  CAS  Google Scholar 

  • Gil-Toma’s JG, Tubby S, Parkin IP, Narband N, Dekker L, Nair SP, Wilson M, Street C. Lethal photosensitisation of Staphylococcus aureus using a toluidine blue O–tiopronin–gold nanoparticle conjugate. J Mater Chem. 2007;17:3739–46.

    Article  CAS  Google Scholar 

  • Gordel M, Olesiak-Bańska J, Matczyszyn K, Nogues C, Buckle M, Samoć M. Post-synthesis reshaping of gold nanorods using a femtosecond laser. Phys Chem Chem Phys. 2014;16:71–8.

    Article  CAS  PubMed  Google Scholar 

  • Guo B-L, Han P, Guo L-C, Cao Y-Q, Li A-D, Kong J-Z, Zhai H-F, Wu D. The antibacterial activity of Ta-doped ZnO nanoparticles. Nanoscale Res Lett. 2015;10:336.

    Article  PubMed Central  CAS  Google Scholar 

  • Guo SE, Wang E. Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta. 2007;598:181–92.

    Article  CAS  PubMed  Google Scholar 

  • Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004;3:436–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, Cao X, Nahan K, Caruso J, Tang H, Zhang P. Surface plasmon-photosensitizer resonance coupling: an enhanced singlet oxygen production platform for broad-spectrum photodynamic inactivation of bacteria. J Mater Chem B. 2014;2:7073–81.

    Article  CAS  Google Scholar 

  • Huang X, Neretina S, El-Sayed MA. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater. 2009;21:4880–910.

    Article  CAS  PubMed  Google Scholar 

  • Huang WC, Tsai PJ, Chen YC. Functional gold nanoparticles as photothermal agents for selective-killing of pathogenic bacteria. Nanomedicine. 2007;2:777–87.

    Article  CAS  PubMed  Google Scholar 

  • Ireland JC, Klostermann P, Rice EW, Clark RM. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation. Appl Environ Microbiol. 1993;59:1668–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janotti A, Van de Walle CG. Fundamentals of zinc oxide as a semiconductor. Rep Prog Phys. 2009;72:126501.

    Article  CAS  Google Scholar 

  • Jemli M, Alouini Z, Sabbahi S, Gueddari M. Destruction of fecal bacteria in wastewater by three photosensitizers. J Environ Monit. 2002;4:511–6.

    Article  CAS  PubMed  Google Scholar 

  • Jijie R, Dumych T, Chengnan L, Bouckaert J, Turcheniuk K, Hage CH, Heliot L, Cudennec B, Dumitrascu N, Boukherroub R, Szunerits S. Particle-based photodynamic therapy based on indocyanine green modified plasmonic nanostructures for inactivation of a Crohn’s disease-associated Escherichia coli strain. J Mater Chem B. 2016;4:2598–605.

    Article  CAS  Google Scholar 

  • Kairyte K, Kadys A, Luksiene Z. Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J Photochem Photobiol B Biol. 2013;128:78–84.

    Article  CAS  Google Scholar 

  • Kaliya OL, Lukyanets EA, Vorozhtsov GN. Catalysis and photocatalysis by phthalocyanines for technology, ecology and medicine. J Porphyrins Phthalocyanines. 1999;3:592–610.

    Article  CAS  Google Scholar 

  • Kamat JP, Boloor KK, Devasagayam TPA. Chlorophyllin as an effective antioxidant against membrane damage in vitro and ex vivo. Biochimica et Biophysica Acta (BBA) – Mol Cell Biol Lipids. 2000;1487:113–27.

    Article  CAS  Google Scholar 

  • Khan S, Alan F, Azam A, Khan AU. Gold nanoparticles enhance methylene blue-induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm. Int J Nanomedicine. 2012;7:3245–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharkwal GB, Sharma SK, Huang YY, Dai T, Hamblin MR. Photodynamic therapy for infections: clinical applications. Lasers Surg Med. 2011;43:755–67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khlebtsov BN, Tuchina ES, Khanadeev VA, Panfilova EV, Petrov PO, Tuchin VV, Khlebtsov NG. Enhanced photoinactivation of Staphylococcus aureus with nanocomposites containing plasmonic particles and hematoporphyrin. J Biophotonics. 2013;6:338–51.

    Article  CAS  PubMed  Google Scholar 

  • Khlebtsov BN, Tuchina ES, Tuchin VV, Khlebtsov NG. Multifunctional Au nanoclusters for targeted bioimaging and enhanced photodynamic inactivation of Staphylococcus aureus. RSC Adv. 2015;5:61639–49.

    Article  CAS  Google Scholar 

  • Khlebtsov NG, Dykman LA. Immunological properties of gold nanoparticles. Chem Sci. 2017;8:1719–35.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi Y, Sunada K, Iyoda T, Hashimoto K, Fujishima A. Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J Photochem Photobiol A Chem. 1997;106:51–6.

    Article  CAS  Google Scholar 

  • Kim CH, Lee ES, Kang SM, de Jong EJ, Kim BI. Bactericidal effect of the photocatalytic reaction of titanium dioxide using visible wavelengths on Streptococcus mutans biofilm. Photodiagn Photodyn Ther. 2017;18:279–83.

    Article  CAS  Google Scholar 

  • Konan YN, Berton M, Górny R, Allemann E. Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl). Eur J Pharm Sci. 2003;18:241–9.

    Article  CAS  PubMed  Google Scholar 

  • Kuo W, Chang CN, Chang YT, Yeh CS. Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem Commun. 2009;32:4853–5.

    Article  CAS  Google Scholar 

  • Kussovski V, Mantareva V, Angelou I, Orozova P, Wöhrle D, Schnurpfeil G, Borisova E, Auramov L. Photodynamic inactivation of Aeromonas hydrophila by cationic phthalocyanines with different hydrophobicity. FEMS Microbiol Lett. 2009;294:133–40.

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova NA, Gretsova NS, Derkacheva VM, Kaliya OL, Lukyanets EA. Sulfonated phthalocyanines: aggregation and singlet oxygen quantum yield in aqueous solution. J Porphyrins Phthalocyanines. 2003;7:147–54.

    Article  CAS  Google Scholar 

  • Kuznetsova NA, Makarov DA, Kaliya OL, Vorozhtsov GN. Photosensitized oxidation by dioxygen as the base for drinking water disinfection. J Hazard Mater. 2007;146:487–91.

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Nakamura M, Ohgaki S. Inactivation of phage Q beta by 254 nm UV light and titanium dioxide photocatalyst. J Environ Sci Health – Part A Toxic/Hazard Subst Environ Eng. 1998;33:1643–55.

    Article  Google Scholar 

  • Lee S, Nishida K, Otaki M, Ohgaki S. Photocatalytic inactivation of phage Qβ by immobilized titanium dioxide mediated photocatalyst. Water Sci Technol. 1997;35:101–6.

    CAS  Google Scholar 

  • Linsebigler AL, Lu G, Yates JT Jr. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev. 1995;95:735–58.

    Article  CAS  Google Scholar 

  • Liu Y, Li J, Qiu XF, Burda C. Bactericidal activity of nitrogen-doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances (EPS). J Photochem Photobiol A Chem. 2007;190:94–100.

    Article  CAS  Google Scholar 

  • Loschenov VB, Konov VI, Prokhorov AM. Photodynamic therapy and fluorescence diagnostics. Laser Phys. 2000;10:1188–207.

    Google Scholar 

  • Lu T, Shao P, Mathew I, Sand A, Sun W. Synthesis and photophysics of benzotexaphyrin: a near-infrared emitter and photosensitizer. J Am Chem Soc. 2008;130:15782–3.

    Article  CAS  PubMed  Google Scholar 

  • Makarov NS, Rebane A, Drobizhev M, Wolleb H, Spahni H. Optimizing two-photon absorption for volumetric optical data storage. J Opt Soc Am B. 2007;24:1874–85.

    Article  CAS  Google Scholar 

  • Maliszewska I, Leśniewska A, Olesiak-Bańska J, Matczyszyn K, Samoć M. Biogenic gold nanoparticles enhance methylene blueinduced phototoxic effect on Staphylococcus epidermidis. J Nanopart Res. 2014;16:2457.

    Article  CAS  Google Scholar 

  • Maliszewska I, Lisiak B, Popko K, Matczyszyn K. Enhancement of rose bengal-mediated photodynamic fungicidal efficacy against Candida albicans in the presence of biogenic gold nanoparticles. Photochem Photobiol. 2017.

    Google Scholar 

  • Masilela N, Antunes E, Nyokong T. Axial coordination of zinc and silicon phthalocyanines to silver and gold nanoparticles: an investigation of their photophysicochemical and antimicrobial behaviour. J Porphyrins Phthalocyanines. 2013;17:417–30.

    Article  CAS  Google Scholar 

  • Matsunaga T, Tomoda R, Nakajima T, Wake H. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett. 1985;29:211–4.

    Article  CAS  Google Scholar 

  • Meeker DG, Jenkins SV, Miller EK, Beenken KE, Loughran AJ, Powless A, Muldoon TJ, Galanzha EI, Zharov VP, Smeltzer MS, Chen J. Synergistic photothermal and antibiotic killing of biofilm-associated Staphylococcus aureus using targeted antibiotic-loaded gold nanoconstructs. ACS Infect Dis. 2016;2:241–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minnock A, Vernon DI, Schofield J, Griffiths J, Parish JH, Brown SB. Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-positive and gram-negative bacteria. J Photochem Photobiol B Biol. 1996;32:159–64.

    Article  CAS  Google Scholar 

  • Mohd AS, Tufail S, Khan AA, Owais M. Gold nanoparticle-photosensitizer conjugate based photodynamic inactivation of biofilm producing cells: potential for treatment of C. albicans infection in BALB/c mice. PLoS One. 2015;10:1–20.

    Google Scholar 

  • Mthethwa T, Nyokong T. Photoinactivation of Candida albicans and Escherichia coli using aluminium phthalocyanine on gold nanoparticles. Photochem Photobiol Sci. 2015;14:1346–56.

    Article  CAS  PubMed  Google Scholar 

  • Nadtochenko VA, Radtsig MA, Khmel IA. Antimicrobial effect of metallic and semiconductor nanoparticles. Nanotechnol Russ. 2010;5:277–88.

    Article  Google Scholar 

  • Naik AJT, Ismailc S, Kayb C, Wilsonc M, Parkin IP. Antimicrobial activity of polyurethane embedded with methylene blue, toluidine blue and gold nanoparticles against Staphylococcus aureus; illuminated with white light. Mater Chem Phys. 2011;129:446–50.

    Article  CAS  Google Scholar 

  • Narband N, Mubarak M, Ready D, Parkin IP, Nair SP, Green MA, Beeby A, Wilson M. Quantum dots as enhancers of the efficacy of bacterial lethal photosensitization. Nanotechnology. 2008;19:445102.

    Article  CAS  PubMed  Google Scholar 

  • Nombona N, Antunes E, Chidawanyika W, Kleyi P, Tshentu Z, Nyokong T. Synthesis, photophysics and photochemistry of phthalocyanine-Ɛ-polylysine bonjugates in the presence of metal nanoparticles against Staphylococcus aureus. J Photochem Photobiol A Chem. 2012;233:24–33.

    Article  CAS  Google Scholar 

  • Norman RS. Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett. 2008;8:302–6.

    Article  CAS  PubMed  Google Scholar 

  • Olesiak-Bańska J, Gordel M, Kołkowski R, Matczyszyn K, Samoć M. Third-order nonlinear optical properties of colloidal gold nanorods. J Phys Chem C. 2012;116:13731–7.

    Article  CAS  Google Scholar 

  • Oliveira A, Almeida A, Carvalho CMB, Tome JPC, Faustino MAF, Neves MGPMS, Tomé AC, Cavaleiro JA, Cunha A. Porphyrin derivatives as photosensitizers for the inactivation of Bacillus cereus endospores. J Appl Microbiol. 2009;106:1986–95.

    Article  CAS  PubMed  Google Scholar 

  • Oves M, Arshad M, Khan MS, Ahmed AS, Azam A, Ismail IMI. Antimicrobial activity of cobalt doped zinc oxide nanoparticles: targeting water borne bacteria. J Saudi Chem Soc. 2015;19:581–8.

    Article  Google Scholar 

  • Padmavathy N, Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater. 2008;9:1–7.

    Article  CAS  Google Scholar 

  • Padmavathy N, Vijayaraghavan R. Interaction of ZnO nanoparticles with microbes-a physio and biochemical assay. J Biomed Nanotechnol. 2011;7:813–22.

    Article  CAS  PubMed  Google Scholar 

  • Pagonis TC, Chen J, Fontana CR, Devalapally H, Ruggiero K, Song X, Foschi F, Dunham J, Skobe Z, Yamazaki H, Kent R, Tanner AC, Amiji MM, Soukos NS. Nanoparticle-based endodontic antimicrobial photodynamic therapy. J Endod. 2010;36:322–8.

    Article  PubMed  Google Scholar 

  • Perni S, Piccirillo C, Kafizas A, Uppal M, Pratten J, Wilson M, Parkin IP. Antibacterial activity of silicone containing methylene blue and gold nanoparticles of various sizes under laser light irradiation. J Clust Sci. 2010;21:427–38.

    Article  CAS  Google Scholar 

  • Perni S, Piccirillo C, Pratten J, Prokopovich P, Chrzanowski W, Parkin IP, Wilson M. The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials. 2009;30:89–93.

    Article  CAS  PubMed  Google Scholar 

  • Plaetzer K, Krammer B, Berlanda J, Berr F, Kiesslich T. Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med Sci. 2009;24:259–68.

    Article  CAS  PubMed  Google Scholar 

  • Podporska-Carroll J, Myles A, Quilty B, McCormack DE, Fagan R, Hinder SJ, Dionysiou DD, Suresh CP. Antibacterial properties of F-doped ZnO visible light photocatalyst. J Hazard Mater. 2017;324:39–47.

    Article  CAS  PubMed  Google Scholar 

  • Prado-Prone G, Silva-Bermudez P, Garcia-Macedo A, Almaguer-Flores A, Ibarra C, Velasquillo-Martinez C. Photocatalytic antibacterial effect of ZnO nanoparticles into coaxial electrospun PCL fibers to prevent infections from skin injuries. Proceedings of the energy-based treatment of tissue and assessment IX; 22.02.2017. San Francisco: Thomas P. Ryan; 2017.

    Google Scholar 

  • Prasad GK, Agarwal GS, Singh B, Rai GP, Vijayaraghavan R. Photocatalytic inactivation of Bacillus anthracis by titania nanomaterials. J Hazard Mater. 2009;165:506–10.

    Article  CAS  PubMed  Google Scholar 

  • Prasanna VL, Vijayaraghavan R. Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir. 2015;31:9155–62.

    Article  CAS  Google Scholar 

  • Rao KVS, Zhuo BX, Cox JM, Chiang K, Brungs M, Amal R. Photoinduced bactericidal properties of nanocrystalline TiO2 thin films. J Biomed Nanotechnol. 2006;2:71–3.

    Article  CAS  Google Scholar 

  • Ratto F, Tuchina ES, Khlebtsov BN, Centi S, Matteini P, Rossi F, Fusi F, Khlebtsov NG, Pini R, Tuchin VV. Combined near infrared photothermolysis and photodynamic therapy by association of gold nanoparticles and an organic dye. Proceedings of the plasmonics in biology and medicine VIII, San Francisco; 2011.

    Google Scholar 

  • Raulio M, Pore V, Areva S, Ritala M, Leskela M, Linden M, Rosenholm JB, Lounatmaa K, Salkinoja-Salonen M. Destruction of Deinococcus geothermalis biofilm by photocatalytic ALD and sol-gel TiO(2) surfaces. J Ind Microbiol Biotechnol. 2006;33:261–8.

    Article  CAS  PubMed  Google Scholar 

  • Reddy MP, Venugopal A, Subrahmanyam M. Hydroxyapatite-supported ag–TiO2 as Escherichia coli disinfection photocatalyst. Water Res. 2007;41:379–86.

    Article  CAS  Google Scholar 

  • Ricchelli F. Photophysical properties of porphyrins in biological membranes. J Photochem Photobiol B Biol. 1995;29:109–18.

    Article  CAS  Google Scholar 

  • Rincon AG, Pulgarin C. Fe3+and TiO2 solar-light-assisted inactivation of E. coli at field scale: implications in solar disinfection at low temperature of large quantities of water. Catal Today. 2007;122:128–36.

    Article  CAS  Google Scholar 

  • Robertson JMC, Robertson PKJ, Lawton LA. A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic microorganisms. J Photochem Photobiol A Chem. 2005;175:51–6.

    Article  CAS  Google Scholar 

  • Saito T, Iwase T, Horie J, Morioka T. Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on mutans streptococci. J Photochem Photobiol B Biol. 1992;14:369–79.

    Article  CAS  Google Scholar 

  • Sakamoto K, Ohno-Okumura E. Syntheses and functional properties of phthalocyanines. Materials. 2009;2:1127–79.

    Google Scholar 

  • Samia AC, Dayal S, Burda C. Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy. Photochem Photobiol. 2009;82:617–25.

    Article  CAS  Google Scholar 

  • Segalla A, Borsarelli CD, Braslavsky SE, Spikes JD, Roncucci GG, Dei D, Chiti G, Jori G, Reddi E. Photophysical, photochemical and antibacterial photosensitizing properties of a novel octacationic Zn(II)-phthalocyanine. Photochem Photobiol Sci. 2002;1:641–8.

    Article  CAS  PubMed  Google Scholar 

  • Seven O, Dindar B, Aydemir S, Metin D, Ozinel M, Icli S. Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with TiO2, ZnO and Sahara Desert dust. J Photochem Photobiol A Chem. 2004;165:103–7.

    Article  CAS  Google Scholar 

  • Sharma SK, Mroz P, Dai T, Huang YY, Denis TGS, Hamblin MR. Photodynamic therapy for cancer and for infections: what is the difference? Israel J Chem. 2012;52:691–705.

    Article  CAS  Google Scholar 

  • Shchukin DG, Ustinovich EA, Kulak AI, Sviridov DV. Heterogeneous photocatalysis in titania-containing liquid foam. Photochem Photobiol Sci. 2004;3:157–9.

    Article  CAS  PubMed  Google Scholar 

  • Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Dasmawati M. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015;7:219–42.

    Article  CAS  Google Scholar 

  • Skorb EV, Antonouskaya LI, Belyasova NA, Shchukin DG, Mohwald H, Sviridov DV. Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2:In2O3 nanocomposite. Appl Catal B Environ. 2008;84:94–9.

    Article  CAS  Google Scholar 

  • Sokmen M, Candan F, Sumer Z. Disinfection of E-coli by the Ag-TiO2/UV system: lipidperoxidation. J Photochem Photobiol A Chem. 2001;143:241–4.

    Article  CAS  Google Scholar 

  • Spesia MB, Rovera M, Durantini EN. Photodynamic inactivation of Escherichia coli and Streptococcus mitis by cationic zinc(II) phthalocyanines in media with blood derivatives. Eur J Med Chem. 2010;45:2198–205.

    Article  CAS  PubMed  Google Scholar 

  • Sun DS, Kau JH, Huang HH, Tseng YH, Wu WS, Chang HH. Antibacterial properties of visible-light-responsive carbon-containing titanium dioxide photocatalytic nanoparticles against anthrax. Nano. 2016;6:237.

    Google Scholar 

  • Sunada K, Kikuchi Y, Hashimoto K, Fujishima A. Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol. 1998;32:726–8.

    Article  CAS  Google Scholar 

  • Sunada K, Watanabe T, Hashimoto K. Bactericidal activity of copper-deposited TiO2 thin film under weak UV light illumination. Environ Sci Technol. 2003;37:4785–9.

    Article  CAS  PubMed  Google Scholar 

  • Tuchina ES, Tuchin VV, Khlebtsov BN, Khlebtsov NG. Phototoxic effect of conjugates of plasmon-resonance nanoparticles with indocyanine green dye on Staphylococcus aureus induced by IR laser radiation. Quantum Electron. 2011;41:354–9.

    Article  CAS  Google Scholar 

  • Vacaroiu C, Enache M, Gartner M, Popescu G, Anastasescu M, Brezeanu A, Todorova N, Giannakopoulou T, Trapalis C, Dumitru L. The effect of thermal treatment on antibacterial properties of nanostructured TiO2 (N) films illuminated with visible light. World J Microbiol Biotechnol. 2009;25:27–31.

    Article  CAS  Google Scholar 

  • Walter MG, Rudine AB, Wamser CC. Porphyrins and phthalocyanines in solar photovoltaic cells. J Porphyrins Phthalocyanines. 2010;14:759–92.

    Article  CAS  Google Scholar 

  • Wang ZL. Zinc oxide nanostructures: growth, properties and applications. J Phys Condens Matter. 2004;16:R829–58.

    Article  CAS  Google Scholar 

  • Wang C, Dong H, Hu W, Liu Y, Zhu D. Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev. 2012;112:2208–67.

    Article  CAS  PubMed  Google Scholar 

  • Watts RJ, Kong S, Orr MP, Miller GC, Henry BE. Photocatalytic inactivation of coliform bacteria and viruses in secondary wastewater effluent. Water Res. 1995;29:95–100.

    Article  CAS  Google Scholar 

  • Wei W, Lin W-Y, Zainal Z, Williams NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K. Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ Sci Technol. 1994;28:934–8.

    Article  CAS  PubMed  Google Scholar 

  • Wellings J, Chaure N, Heavens S, Dharmadasa I. Growth and characterisation of electrodeposited ZnO thin films. Thin Solid Films. 2008;516:3893–8.

    Article  CAS  Google Scholar 

  • Wöhrle D, Schnurpfeil G, Makarov SG, Kazarin A, Suvorova ON. Practical applications of phthalocyanines – from dyes and pigments to materials for optical, electronic and photo-electronic devices. Макрогетероциклы / Macroheterocycles. 2012;5:191–202.

    Article  CAS  Google Scholar 

  • Zafar I, Arfan M, Nasir RP, Shaikh AJ. Aluminum phthalocyanine derivatives: potential in antimicrobial PDT and photodiagnosis. Austin Biomol Open Access. 2016;1:1010.

    Google Scholar 

  • Zane A, Ranfang Z, Villamena FA, Rockenbauer A, Foushee AMD, Flores K, Dutta PK, Nagy A. Biocompatibility and antibacterial activity of nitrogen-doped titanium dioxide nanoparticles for use in dental resin formulations. Int J Nanomedicine. 2016;11:6459–70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yu L, Zhuang C, Peng T, Li R, Li X. Highly asymmetric phthalocyanine as a sensitizer of graphitic carbon nitride for extremely efficient photocatalytic H2 production under near-infrared light. ACS Catal. 2014;4:162–70.

    Article  CAS  Google Scholar 

  • Zharov VP, Mercer KE, Galitovskaya EN, Smeltzery MS. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J. 2006;90:619–27.

    Article  CAS  PubMed  Google Scholar 

  • Zhou G, Li Y, Xiao W, Zhang L, Zuo Y, Xue J, Jansen JA. Synthesis, characterization, and antibacterial activities of a novel nanohydroxyapatite/zinc oxide complex. J Biomed Mater Res A. 2008;85:929–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially financed by a statutory activity subsidy from the Polish Ministry of Science and Higher Education (PMSHE) for the Faculty of Chemistry of Wrocław University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irena Maliszewska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maliszewska, I., Popko, K. (2017). Metal and Metal Oxide Nanoparticles in Photoinactivation of Pathogens. In: Rai, Ph.D, M., Shegokar, Ph.D, R. (eds) Metal Nanoparticles in Pharma. Springer, Cham. https://doi.org/10.1007/978-3-319-63790-7_12

Download citation

Publish with us

Policies and ethics