Skip to main content

Classifying Non-linear Gene Expression Data Using a Novel Hybrid Rotation Forest Method

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10363))

Included in the following conference series:

Abstract

Rotation forest (RoF) is an ensemble classifier based on the combination of linear analysis theories and decision tree algorithms. In existing works, the RoF has demonstrated high classification accuracy and good performance with a reasonable number of base classifiers. However, the classification accuracy drops drastically for linearly inseparable datasets. This paper presents a hybrid algorithm integrating kernel principal component analysis and RoF algorithm (KPCA-RoF) to solve the classification problem in linearly inseparable cases. We choose the radial basis function (RBF) kernel for the PCA algorithm to establish the nonlinear mapping and segmentation for gene data. Moreover, we focus on the determination of suitable parameters in the kernel functions for better performance. Experimental results show that our algorithm solves linearly inseparable problem and improves the classification accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, W., Wang, Z., Bu, X., Li, R., Zhou, M., Hu, Z.: Discovering of tumor-targeting peptides using bi-functional microarray. Adv. Healthcare Mater. 4(18), 2802–2808 (2015)

    Article  Google Scholar 

  2. Stanbury, J.F., Baade, P.D., Yu, Y., Yu, X.Q.: Impact of geographic area level on measuring socioeconomic disparities in cancer survival in New South Wales, Australia: a period analysis. Cancer Epidemiol. 43, 56–62 (2016)

    Article  Google Scholar 

  3. Liszewski, K.: Exploiting Gene-Expression Data (2012)

    Google Scholar 

  4. Liu, Y., Lu, H., Yan, K., Xia, H., An, C.: Applying cost-sensitive extreme learning machine and dissimilarity integration to gene expression data classification. Comput. Intell. Neurosci. 2017, 1–9 (2016)

    Article  Google Scholar 

  5. Wang, Z., Zhang, J.: Impact of gene expression noise on organismal fitness and the efficacy of natural selection. Proc. Natl. Acad. Sci. 108(16), E67–E76 (2011)

    Article  Google Scholar 

  6. Pastinen, T., Sladek, R., Gurd, S., Ge, B., Lepage, P., Lavergne, K., Verner, A.: A survey of genetic and epigenetic variation affecting human gene expression. Physiol. Genomics 16(2), 184–193 (2004)

    Article  Google Scholar 

  7. Lu, H.J., An, C.L., Zheng, E.H., Lu, Y.: Dissimilarity based ensemble of extreme learning machine for gene expression data classification. Neurocomputing 128, 22–30 (2014)

    Article  Google Scholar 

  8. Langdon, W.B., Buxton, B.F.: Genetic programming for mining DNA chip data from cancer patients. Genetic Programm. Evolvable Mach. 5(3), 251–257 (2004)

    Article  Google Scholar 

  9. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10), 906–914 (2000)

    Article  Google Scholar 

  10. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)

    Article  Google Scholar 

  11. Su Chong, J., Shenggen, L.Y., et al.: Improving random forest and rotation forest for highly imbalanced datasets. Intell. Data Anal. 19(6), 1409–1432 (2015)

    Article  Google Scholar 

  12. Suykens, J.A., Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Article  MATH  Google Scholar 

  13. Gu, B., Sheng, V.S., Tay, K.Y., Romano, W., Li, S.: Incremental support vector learning for ordinal regression. IEEE Trans. Neural Netw. Learn. Syst. 26(7), 1403–1416 (2015)

    Article  MathSciNet  Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. Mika, S., Schölkopf, B., Smola, A.J., Müller, K.R., Scholz, M., Rätsch, G.: Kernel PCA and de-noising in feature spaces. In: NIPS, vol. 11, pp. 536–542, December 1998

    Google Scholar 

  16. Schölkopf, B., Smola, A., Müller, K.-R.: Kernel principal component analysis. In: Gerstner, W., Germond, A., Hasler, M., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997). doi:10.1007/BFb0020217

    Google Scholar 

  17. Hoffmann, H.: Kernel PCA for novelty detection. Pattern Recogn. 40(3), 863–874 (2007)

    Article  MATH  Google Scholar 

  18. Olshen, L.B.J.F.R., Stone, C.J.: Classification and regression trees. Wadsworth Int. Group 93(99), 101 (1984)

    MATH  Google Scholar 

  19. Quinlan, J.R.: C4. 5: Programs for Machine Learning. Elsevier, Amsterdam (2014)

    Google Scholar 

  20. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  21. Rodriguez, J.J., Kuncheva, L.I., Alonso, C.J.: Rotation forest: a new classifier ensemble method. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1619–1630 (2006)

    Article  Google Scholar 

  22. Kuncheva, L.I., Rodríguez, J.J.: An experimental study on rotation forest ensembles. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007, vol. 4472, pp. 459–468. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72523-7_46

    Google Scholar 

  23. Zhang, C.X., Zhang, J.S.: RotBoost: a technique for combining rotation forest and AdaBoost. Pattern Recogn. Lett. 29(10), 1524–1536 (2008)

    Article  Google Scholar 

  24. Mousavi, R., Eftekhari, M., Haghighi, M.G.: A new approach to human microRNA target prediction using ensemble pruning and rotation forest. J. Bioinform. Comput. Biol. 13(06), 1550017 (2015)

    Article  Google Scholar 

  25. Wong, L., You, Z.H., Ming, Z., Li, J., Chen, X., Huang, Y.A.: Detection of interactions between proteins through rotation forest and local phase quantization descriptors. Int. J. Mol. Sci. 17(1), 21 (2015)

    Article  Google Scholar 

  26. Ayerdi, B., Romay, M.G.: Hyperspectral image analysis by spectral-spatial processing and anticipative hybrid extreme rotation forest classification. IEEE Trans. Geosci. Remote Sens. 54(5), 2627–2639 (2016)

    Article  Google Scholar 

  27. Kuang, F., Xu, W., Zhang, S.: A novel hybrid KPCA and SVM with GA model for intrusion detection. Appl. Soft Comput. 18, 178–184 (2014)

    Article  Google Scholar 

  28. Mengqi, N., Jingjing, D., Tianzhen, W., Diju, G., Jingang, H., Benbouzid, M.E.H.: A hybrid kernel PCA, hypersphere SVM and extreme learning machine approach for nonlinear process online fault detection. In: IECON 2015-41st Annual Conference of the IEEE Industrial Electronics Society, pp. 002106–002111. IEEE, November 2015

    Google Scholar 

  29. Luo, K., Li, S., Ren Deng, W.Z., Cai, H.: Multivariate statistical kernel PCA for nonlinear process fault diagnosis in military barracks. Int. J. Hybrid Inf. Technol. 9(1), 195–206 (2016)

    Article  Google Scholar 

  30. Boujnouni, M.E., Jedra, M., Zahid, N.: Support vector domain description with a new confidence coefficient. In: 2014 9th International Conference on Intelligent Systems: Theories and Applications (SITA-2014), pp. 1–8. IEEE, May 2014

    Google Scholar 

  31. Amari, S.I., Wu, S.: Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 12(6), 783–789 (1999)

    Article  Google Scholar 

  32. Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice Hall, Upper Saddle River (1982)

    MATH  Google Scholar 

  33. Brereton, R.G.: The F distribution and its relationship to the chi squared and t distributions. J. Chemom. 29(11), 582–586 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lu, H., Meng, Y., Yan, K., Xue, Y., Gao, Z. (2017). Classifying Non-linear Gene Expression Data Using a Novel Hybrid Rotation Forest Method. In: Huang, DS., Hussain, A., Han, K., Gromiha, M. (eds) Intelligent Computing Methodologies. ICIC 2017. Lecture Notes in Computer Science(), vol 10363. Springer, Cham. https://doi.org/10.1007/978-3-319-63315-2_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63315-2_64

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63314-5

  • Online ISBN: 978-3-319-63315-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics