Skip to main content

High-Efficiency Solar Cells

  • Chapter
  • First Online:
Concentrating Photovoltaics (CPV): The Path Ahead

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

One idea that we will return to throughout this book is that CPV, as configured today, is an “overconstrained” system from an engineering standpoint. Too many design elements and environmental factors must be controlled too precisely to make a system that is simple and cheap enough to compete economically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Woodhouse, M., & Goodrich, A. (2014). Manufacturing cost analysis relevant to single-and dual-junction photovoltaic cells fabricated with III–Vs and III–Vs grown on Czochralski silicon (presentation). CO: National Renewable Energy Laboratory (NREL), Golden.

    Google Scholar 

  2. Bett, A., Dimroth, F., Stollwerck, G., & Sulima, O. (1999). III–V compounds for solar cell applications. Applied Physics A, 69, 119–129.

    Article  Google Scholar 

  3. Kayes, B. M., et al. (2011). Photovoltaic Specialists Conference (PVSC), 37th IEEE (pp. 000004–000008). Piscataway: IEEE.

    Google Scholar 

  4. Yablonovitch, E., & Gmitter, T. (1986). Auger recombination in silicon at low carrier densities. Applied Physics Letters, 49, 587–589.

    Article  Google Scholar 

  5. Yablonovitch, E., Miller, O. D., & Kurtz, S. R. (2012). In Photovoltaic Specialists Conference (PVSC), 38th IEEE (pp. 001556–001559). IEEE: Piscataway.

    Google Scholar 

  6. Shockley, W., & Queisser, H. J. (1961). Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 32, 510–519.

    Article  Google Scholar 

  7. Hirst, L. C., & Ekins-Daukes, N. J. (2011). Fundamental losses in solar cells. Progress in Photovoltaics: Research and Applications, 19, 286–293.

    Article  Google Scholar 

  8. Cotal, H., et al. (2009). III–V multijunction solar cells for concentrating photovoltaics. Energy & Environmental Science, 2, 174–192.

    Article  Google Scholar 

  9. Dimroth, F., et al. (2014). Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency. Progress in Photovoltaics: Research and Applications, 22, 277–282.

    Article  Google Scholar 

  10. Vurgaftman, I., Meyer, J., & Ram-Mohan, L. (2001). Band parameters for III–V compound semiconductors and their alloys. Journal of Applied Physics, 89, 5815–5875.

    Article  Google Scholar 

  11. King, R., et al. (2012). Solar cell generations over 40% efficiency. Progress in Photovoltaics: Research and Applications, 20, 801–815.

    Article  Google Scholar 

  12. ISE”, F. (2014).

    Google Scholar 

  13. Zahler, J. M. et al. NCPV and Solar Program Review Meeting.

    Google Scholar 

  14. Derendorf, K., et al. (2013). Fabrication of GaInP/GaAs//Si solar cells by surface activated direct wafer bonding. IEEE Journal of Photovoltaics, 3, 1423–1428.

    Article  Google Scholar 

  15. Gee, J. M., & Virshup, G. F. (1988). Photovoltaic Specialists Conference, Conference Record of the Twentieth IEEE (pp. 754–758). Piscataway: IEEE.

    Book  Google Scholar 

  16. Antypas, G. A., Bell, R. L., & Moon, R. L. (1982). Google Patents.

    Google Scholar 

  17. Lee, K.-H., et al. (2016). In Photovoltaic Specialists Conference (PVSC), IEEE 43rd (1957–1959). Piscataway: IEEE.

    Google Scholar 

  18. Essig, S. et al. Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency. IEEE Journal of Photovoltaics, 6, 1012–1019 (2016).

    Google Scholar 

  19. Essig, S., et al. (2016). In Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd. (2040–2042). Piscataway: IEEE.

    Google Scholar 

  20. Vos, A. D. (1980). Detailed balance limit of the efficiency of tandem solar cells. Journal of Physics. D. Applied Physics, 13, 839.

    Article  Google Scholar 

  21. Essig, S., et al. (2015). Progress towards a 30% efficient GaInP/Si tandem solar cell. Energy Procedia, 77, 464–469.

    Article  Google Scholar 

  22. Mojiri, A., Taylor, R., Thomsen, E., & Rosengarten, G. (2013). Spectral beam splitting for efficient conversion of solar energy—A review. Renewable and Sustainable Energy Reviews, 28, 654–663.

    Article  Google Scholar 

  23. Imenes, A., & Mills, D. (2004). Spectral beam splitting technology for increased conversion efficiency in solar concentrating systems: a review. Solar Energy Materials and Solar Cells, 84, 19–69.

    Article  Google Scholar 

  24. Kosten, E. D., Warmann, E. C., Lloyd, J., & Atwater, H. A. SPIE Solar Energy+Technology. 882109-882109-882103 International Society for Optics and Photonics.

    Google Scholar 

  25. Keevers, M. J. et al. High Efficiency Spectrum Splitting Prototype Submodule Using Commercial CPV Cells. (2015).

    Google Scholar 

  26. Stefancich, M., et al. (2012). Single element spectral splitting solar concentrator for multiple cells CPV system. Optics Express, 20, 9004–9018.

    Article  Google Scholar 

  27. Caselli, D., & Ning, C.-Z. (2015). Monolithically-integrated laterally-arrayed multiple bandgap solar cells for spectrum-splitting photovoltaic systems. Progress in Quantum Electronics, 39, 24–70.

    Article  Google Scholar 

  28. Rampino, S., Bissoli, F., Gilioli, E., & Pattini, F. (2013). Growth of Cu (In, Ga) Se2 thin films by a novel single-stage route based on pulsed electron deposition. Progress in Photovoltaics: Research and Applications, 21, 588–594.

    Google Scholar 

  29. Gabor, A. M., et al. (1996). Band-gap engineering in Cu (In, Ga) Se2 thin films grown from (In, Ga) 2Se3 precursors. Solar Energy Materials and Solar Cells, 41, 247–260.

    Article  Google Scholar 

  30. NREL Photovoltaic Efficiency Chart. (2016).

    Google Scholar 

  31. Green, M. A., et al. (2017). Solar cell efficiency tables (version 49). Progress in Photovoltaics: Research and Applications, 25, 3–13. doi:10.1002/pip.2855.

    Article  Google Scholar 

  32. Kayes, B. M., Zhang, L., Twist, R., Ding, I.-K., & Higashi, G. S. (2014). Flexible thin-film tandem solar cells with > 30% efficiency. IEEE Journal of Photovoltaics, 4, 729–733.

    Article  Google Scholar 

  33. Marti, A., & Araújo, G. L. (1996). Limiting efficiencies for photovoltaic energy conversion in multigap systems. Solar Energy Materials and Solar Cells, 43, 203–222.

    Article  Google Scholar 

  34. NREL. (2016).

    Google Scholar 

  35. Bobela, D. C., Gedvilas, L., Woodhouse, M., Horowitz, K. A., & Basore, P. A. (2017). Economic competitiveness of III–V on silicon tandem one-sun photovoltaic solar modules in favorable future scenarios. Progress in Photovoltaics: Research and Applications, 25, 41–48.

    Article  Google Scholar 

  36. Trube, J., Fischer, M., & Metz, A. (2016). Wiley-V Ch Verlag Gmbh Postfach. 101161, 69451 Weinheim: Germany.

    Google Scholar 

  37. Peters, I., Sofia, S., Mailoa, J., & Buonassisi, T. (2016). Techno-economic analysis of tandem photovoltaic systems. RSC Advances, 6, 66911–66923.

    Article  Google Scholar 

  38. Horowitz, K., Woodhouse, M., Lee, H., & Smestad, G. (2015). Bottom-Up Cost Analysis of a High Concentration PV Module; NREL (National Renewable Energy Laboratory). (NREL (National Renewable Energy Laboratory (NREL), Golden: CO (United States).

    Google Scholar 

  39. Ward, J. S. (2016). Techno-economic analysis of three different substrate removal and reuse strategies for III–V solar cells. Progress in Photovoltaics: Research and Applications, 24, 1284–1292.

    Article  Google Scholar 

  40. Lee, K., Zimmerman, J. D., Hughes, T. W., & Forrest, S. R. (2014). Non-Destructive Wafer Recycling for Low-Cost Thin-Film Flexible Optoelectronics. Advanced Functional Materials, 24, 4284–4291.

    Article  Google Scholar 

  41. Kim, Y., et al. (2017). Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature, 544, 340–343.

    Article  Google Scholar 

  42. Zheng, M., et al. (2016). III–Vs at scale: a PV manufacturing cost analysis of the thin film vapor–liquid–solid growth mode. Progress in Photovoltaics: Research and Applications.

    Google Scholar 

  43. Green, M. A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nat Photon, 8, 506–514. doi:10.1038/nphoton.2014.134.

    Article  Google Scholar 

  44. Chilvery, A. K., et al. (2015). Perovskites: Transforming photovoltaics, a mini-review. PHOTOE, 5, 057402–057402. doi:10.1117/1.JPE.5.057402.

    Google Scholar 

  45. Hwang, K., et al. (2015). Toward large scale roll-to-roll production of fully printed perovskite solar cells. Advanced Materials, 27, 1241–1247.

    Article  Google Scholar 

  46. Wang, D., Wright, M., Elumalai, N. K., & Uddin, A. (2016). Stability of perovskite solar cells. Solar Energy Materials and Solar Cells, 147, 255–275.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Apostoleris .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Apostoleris, H., Stefancich, M., Chiesa, M. (2018). High-Efficiency Solar Cells. In: Concentrating Photovoltaics (CPV): The Path Ahead. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-62980-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62980-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62979-7

  • Online ISBN: 978-3-319-62980-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics