Skip to main content

DW MRI: Techniques, Protocols and Post-processing Aspects

  • Chapter
  • First Online:
Diffusion Weighted Imaging of the Hepatobiliary System

Abstract

Diffusion is the process of random motion of water molecules in a free medium. For human tissues, water mobility can be assessed in the intracellular, extracellular and intravascular spaces. All media have a different degree of structure and thus pose a variant level of difficulty in water mobility that is called “diffusivity”. A sequence sensitized to microscopic water mobility by means of strong gradient pulses can be utilized to provide insights in the complexity of the environment which in turn can reveal information related to tissue microarchitecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paul L. Sur la théorie du mouvement brownien. C R Acad Sci. 1908;146:530–2.

    Google Scholar 

  2. Albert E. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys. 1905;322(8):549–60.

    Google Scholar 

  3. White M, Dale A. Distinct effects of nuclear volume fraction and cell diameter on high b-value diffusion MRI contrast in tumours. Magn Reson Med. 2014;72:1435–43.

    Article  Google Scholar 

  4. Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev. 1954;94:630–8.

    Article  CAS  Google Scholar 

  5. Torrey HC. Bloch equations with diffusion terms. Phys Rev. 1956;104(3):563–5.

    Article  Google Scholar 

  6. Woessner DE. Effects of diffusion in nuclear magnetic resonance spin-echo experiments. J Chem Phys. 1961;34:2057–61.

    Article  CAS  Google Scholar 

  7. Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys. 1965;42(1):288–92.

    Article  CAS  Google Scholar 

  8. Setsompop K, Gagoski BA, Polimeni JR, Witzel T, Wedeen VJ, Wald LL. Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn Reson Med. 2012;67(5):1210–24.

    Article  Google Scholar 

  9. Obele CC, Glielmi C, Ream J, Doshi A, Campbell N, Zhang HC, Babb J, Bhat H, Chandarana H. Simultaneous multislice accelerated free-breathing diffusion-weighted imaging of the liver at 3T. Abdom Imaging. 2015;40:2323–30.

    Article  Google Scholar 

  10. Porter DA, Heidemann R. High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med. 2009;62:468–75.

    Article  Google Scholar 

  11. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology. 1988;168:497–505.

    Article  Google Scholar 

  12. Cohen AD, Schieke MC, Hohenwalter MD, Schmainda KM. The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver. Magn Reson Med. 2015;73:306–11.

    Article  Google Scholar 

  13. Ahlgren A, Knutsson L, Wirestam R, Nilsson M, Ståhlberg F, Topgaard D, Lasič S. Quantification of microcirculatory parameters by joint analysis of flow-compensated and non-flow-compensated intravoxelin coherent motion (IVIM) data. NMR Biomed. 2016;29:640–9.

    Google Scholar 

  14. Lemke A, Stieltjes B, Schad LR, Laun FB. Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging. 2011;29(6):766–76.

    Article  Google Scholar 

  15. Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med. 2010;64(6):1580–5.

    Article  Google Scholar 

  16. Wetscherek A, Stieltjes B, Laun FB. Flow-compensated intravoxelin coherent motion diffusion imaging. Magn Reson Med. 2015;74(2):410–9.

    Article  Google Scholar 

  17. Ozaki M, Inoue Y, Miyati T, Hata H, Mizukami S, Komi S, Matsunaga K, Woodhams R. Motion artifact reduction of diffusion-weighted MRI of the liver: use of velocity-compensated diffusion gradients combined with tetrahedral gradients. J Magn Reson Imaging. 2013;37:172–8.

    Article  Google Scholar 

  18. Coenegrachts K, Orlent H, terBeek L, Haspeslagh M, Bipat S, Stoker J, Rigauts H. Improved focal liver lesion detection: comparison of single-shot spin-echo echo-planar and superparamagnetic iron oxide (SPIO)-enhanced MRI. J Magn Reson Imaging. 2008;27(1):117–24.

    Article  Google Scholar 

  19. Coenegrachts K, Matos C, terBeek L, Metens T, Haspeslagh M, Bipat S, Stoker J, Rigauts H. Focal liver lesion detection and characterization: comparison of non-contrast enhanced and SPIO-enhanced diffusion-weighted single-shot spin echo echo planar and turbo spin echo T2-weighted imaging. Eur J Radiol. 2009;72(3):432–9.

    Article  Google Scholar 

  20. Bennett KM, Schmainda KM, Bennett RT, Rowe DB, Lu H, Hyde JS. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med. 2003;50:727–34.

    Article  Google Scholar 

  21. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med. 2005;53:1432–40.

    Article  Google Scholar 

  22. Panagiotaki E, Walker-Samuel S, Siow B, Johnson SP, Rajkumar V, Pedley RB, Lythgoe MF, Alexander DC. Noninvasive quantification of solid tumor microstructure using verdict MRI. Cancer Res. 2014;74(7):1902–12.

    Article  CAS  Google Scholar 

  23. Nilsson M, Lätt J, van Westen D, Brockstedt S, Lasič S, Ståhlberg F, Topgaard D. Noninvasive mapping of water diffusional exchange in the human brain using filter-exchange imaging. Magn Reson Med. 2013;69(6):1573–81.

    Google Scholar 

  24. Colagrande S, Pasquinelli F, Mazzoni LN, Belli G, Virgili G. MR-diffusion weighted imaging of healthy liver parenchyma: repeatability and reproducibility of apparent diffusion coefficient measurement. J Magn Reson Imaging. 2010;31:912–20.

    Article  Google Scholar 

  25. Kyriazi S, Collins DJ, Messiou C, Pennert K, Davidson RL, Giles SL, Kaye SB, Desouza NM. Metastatic ovarian and primary peritoneal cancer: assessing chemotherapy response with diffusion-weighted MR imaging—value of histogram analysis of apparent diffusion coefficients. Radiology. 2011;261(1):182–92.

    Article  Google Scholar 

  26. Zhang YD, Wu CJ, Wang Q, Zhang J, Wang XN, Liu XS, Shi HB. Comparison of utility of histogram apparent diffusion coefficient and R2* for differentiation of low-grade from high-grade clear cell renal cell carcinoma. AJR Am J Roentgenol. 2015;205(2):193–201.

    Article  Google Scholar 

  27. Becker AS, Wagner MW, Wurnig MC, Boss A. Diffusion-weighted imaging of the abdomen: impact of b-values on texture analysis features. NMR Biomed. 2017;30(1):1–11.

    Article  Google Scholar 

  28. Kwee TC, Takahara T, Niwa T, Ivancevic MK, Herigault G, Van Cauteren M, Luijten PR. Influence of cardiac motion on diffusion-weighted magnetic resonance imaging of the liver. MAGMA. 2009;22:319–25.

    Article  CAS  Google Scholar 

  29. Mürtz P, Flacke S, Traber F, van den Brink JS, Gieseke J, Schild HH. Abdomen: diffusion- weighted MR imaging with pulse-triggered single-shot sequences. Radiology. 2002;224:258–64.

    Article  Google Scholar 

  30. Wong O, et al. The effect of respiratory and cardiac motion in liver diffusion tensor imaging (DTI). J Comput Assist Tomogr. 2014;38:352–9.

    Article  Google Scholar 

  31. Chen X, Qin L, Pan D, Huang Y, Yan L, Wang G, Liu Y, Liang C, Liu Z. Liver diffusion-weighted MR imaging: reproducibility comparison of ADC measurements obtained with multiple breath-hold, free-breathing, respiratory-triggered, and navigator-triggered techniques. Radiology. 2014;271:113–25.

    Article  Google Scholar 

  32. Metens T, Absil J, Denolin V, Bali MA, Matos C. Liver apparent diffusion coefficient repeatability with individually predetermined optimal cardiac timing and artefact elimination by signal filtering. J Magn Reson Imaging. 2016;43(5):1100–10.

    Article  Google Scholar 

  33. Braithwaite AC, Dale BM, Boll DT, Merkle EM. Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0T diffusion-weighted imaging of the abdomen. Radiology. 2009;250:459–65.

    Article  Google Scholar 

  34. Kim SY, Lee SS, Park B, Kim N, Kim JK, Park SH, Byun JH, Song KJ, Koo JH, Choi EK, Lee MG. Reproducibility of measurement of apparent diffusion coefficients of malignant hepatic tumors: effect of DWI techniques and calculation methods. J Magn Reson Imaging. 2012;36(5):1131–8.

    Article  Google Scholar 

  35. Kim SY, Lee SS, Byun JH, Park SH, Kim JK, Park B, Kim N, Lee MG. Malignant hepatic tumors: short-term reproducibility of apparent diffusion coefficients with breath-hold and respiratory-triggered diffusion-weighted MR imaging. Radiology. 2010;255:815–23.

    Article  Google Scholar 

  36. Andreou A, Koh DM, Collins DJ, Blackledge M, Wallace T, Leach MO, Orton MR. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol. 2013;23:428–34.

    Article  CAS  Google Scholar 

  37. Song JS, Kwak HS, HeeByon J, Jin GY. Diffusion-weighted mr imaging of upper abdominal organs at different time points: apparent diffusion coefficient normalization using a reference organ. J Magn Reson Imaging. 2017;45:1494–501.

    Article  Google Scholar 

  38. Do RK, Chandarana H, Felker E, Hajdu CH, Babb JS, Kim D, Taouli B. Diagnosis of liver fibrosis and cirrhosis with diffusion-weighted imaging: value of normalized apparent diffusion coefficient using the spleen as reference organ. Am J Roentgenol. 2010;195(3):671–6.

    Article  Google Scholar 

  39. Winfield JM, Tunariu N, Rata M, Miyazaki K, Jerome NP, Germuska M, Blackledge MD, Collins DJ, de Bono JS, Yap TA, de Souza NM, Doran SJ, Koh DM, Leach MO, Messiou C, Orton MR. Extracranial soft-tissue tumors: repeatability of apparent diffusion coefficient estimates from diffusion-weighted MR imaging. Radiology. 2017; https://doi.org/10.1148/radiol.2017161965.

  40. Schwenzer NF, Machann J, Haap MM, Martirosian P, Schraml C, Lie-big G, Stefan N, Haring HU, Claussen CD, Fritsche A, Schick F. T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty-nine subjects-correlation with age, gender, and serum ferritin. Invest Radiol. 2008;43:854–60.

    Article  Google Scholar 

  41. Metens T, Ferraresi KF, Farchione A, Moreno C, Bali MA, Matos C. Normal hepatic parenchyma visibility and ADC quantification on diffusion-weighted MRI at 3 T: influence of age, gender, and iron content. Eur Radiol. 2014;24(12):3123–33.

    Article  Google Scholar 

  42. Lavdas I, Rockall AG, Castelli F, Sandhu RS, Papadaki A, Honeyfield L, Waldman AD, Aboagye EO. Apparent diffusion coefficient of normal abdominal organs and bone marrow from whole-body DWI at 1.5T the effect of sex and age. AJR. 2015;205:242–50.

    Article  Google Scholar 

  43. Barbieri S, Donati OF, Froehlich JM, Thoeny HC. Comparison of intravoxel incoherent motion parameters across MR imagers and field strengths: evaluation in upper abdominal organs. Radiology. 2016;279(3):784–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nickolas Papanikolaou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Metens, T., Papanikolaou, N. (2021). DW MRI: Techniques, Protocols and Post-processing Aspects. In: Matos, C., Papanikolaou, N. (eds) Diffusion Weighted Imaging of the Hepatobiliary System. Springer, Cham. https://doi.org/10.1007/978-3-319-62977-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62977-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62976-6

  • Online ISBN: 978-3-319-62977-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics