Skip to main content

Dr. Alexander Semionovich Poznyak Gorbatch: Biography

  • Chapter
  • First Online:
New Perspectives and Applications of Modern Control Theory
  • 2504 Accesses

Abstract

Alexander S. Poznyak (Alexander Semion Pozniak Gorbatch) was born on December 6, 1946 in Moscow and graduated from Moscow Physical Technical Institute (MPhTI) in 1970. He earned Ph.D. and Doctor Degrees from the Institute of Control Sciences of Russian Academy of Sciences in 1978 and 1989, respectively. From 1973 up to 1993, he served in this institute as researcher and leading researcher, and in 1993 he accepted a post of full professor (3-F) at CINVESTAV of IPN in Mexico.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Books, Articles and Conferences

  1. Aguilar, R., Martinez-Guerra, R., Poznyak, A.S.: Nonlinear PID controller for the regulation of fixed bed bioreactors. In: Proceedings of the 41st IEEE Conference on Decision and Control, vol. 4, pp. 4126–4131 (2002). https://doi.org/10.1109/CDC.2002.1185014

  2. Alazki, H., Ordaz, P., Poznyak, A.S.: Robust bounded control for the flexible arm robot. In: Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 3061–3066 (2013). https://doi.org/10.1109/CDC.2013.6760349

  3. Alazki, H., Poznyak, A.S.: Output linear feedback tracking for discrete-time stochastic model using robust attractive ellipsoid method with LMI application. In: Proceedings of the 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–6 (2009). https://doi.org/10.1109/ICEEE.2009.5393429

  4. Alazki, H., Poznyak, A.S.: Constraint robust stochastic discrete-time tracking: attractive ellipsoids technique. In: Proceedings of the 7th International Conference on Electrical Engineering Computing Science and Automatic Control, pp. 99–104 (2010). https://doi.org/10.1109/ICEEE.2010.5608567

  5. Alazki, H., Poznyak, A.S.: Probabilistic analysis of robust attractive ellipsoids for quasi-linear discrete-time models. In: Proceedings of the 49th IEEE Conference on Decision and Control (CDC), pp. 579–584 (2010). https://doi.org/10.1109/CDC.2010.5717662

  6. Alazki, H., Poznyak, A.S.: Averaged attractive ellipsoid technique applied to inventory projectional control with uncertain stochastic demands. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, pp. 2082–2087 (2011). https://doi.org/10.1109/CDC.2011.6160847

  7. Alazki, H., Poznyak, A.S.: Robust stochastic tracking for discrete-time models: designing of ellipsoid where random trajectories converge with probability one. Int. J. Syst. Sci. 43(8), 1519–1533 (2012). https://doi.org/10.1080/00207721.2010.547664

  8. Alazki, H., Poznyak, A.S.: A class of robust bounded controllers tracking a nonlinear discrete-time stochastic system: attractive ellipsoid technique application. J. Frankl. Inst. Eng. Appl. Math. 350(5), 1008–1029 (2013). https://doi.org/10.1016/j.jfranklin.2013.02.001

  9. Alazki, H., Poznyak, A.S.: Robust output stabilization for a class of nonlinear uncertain stochastic systems under multiplicative and additive noises: the attractive ellipsoid method. J. Ind. Manag. Optim. 12(1), 169–186 (2016). https://doi.org/10.3934/jimo.2016.12.169

  10. Alazki, H.S., Poznyak Gorbatch, A.S.: Inventory constraint control with uncertain stochastic demands: attractive ellipsoid technique application. IMA J. Math. Control Inf. 29(3), 399–425 (2012). https://doi.org/10.1093/imamci/dnr038

  11. Alvarez, I., Poznyak, A.S.: Game theory applied to urban traffic control problem. Proc. ICCAS 2010, 2164–2169 (2010). https://doi.org/10.1109/ICCAS.2010.5670234

  12. Alvarez, I., Poznyak, A.S., Malo, A.: Urban traffic control problem via a game theory application. In: Proceedings of the 46th IEEE Conference on Decision and Control, pp. 2957–2961 (2007). https://doi.org/10.1109/CDC.2007.4434820

  13. Alvarez, I., Poznyak, A.S., Malo, A.: Urban traffic control problem a game theory approach. In: Proceedings of the 47th IEEE Conference on Decision and Control, pp. 2168–2172 (2008). https://doi.org/10.1109/CDC.2008.4739461

  14. Azhmyakov, V., Poznyak, A.S.: A variational characterization of the sliding mode control processes. In: Proceedings of the American Control Conference (ACC), pp. 5383–5388 (2012). https://doi.org/10.1109/ACC.2012.6315542

  15. Azhmyakov, V., Boltyanski, V., Poznyak, A.S.: The dynamic programming approach to multi-model robust optimization. Nonlinear Anal. Theory, Methods Appl. Int. Multidiscip. J. 72(2), 1110–1119 (2010). https://doi.org/10.1016/j.na.2009.07.050

  16. Azhmyakov, V., Boltyanski, V.G., Poznyak, A.S.: First order optimization techniques for impulsive hybrid dynamical systems. In: Proceedings of International Workshop on Variable Structure Systems, pp. 173–178 (2008). https://doi.org/10.1109/VSS.2008.4570703

  17. Azhmyakov, V., Boltyanski, V.G., Poznyak, A.S.: On the dynamic programming approach to multi-model robust optimal control problems. In: Proceedings of the American Control Conference, pp. 4468–4473 (2008). https://doi.org/10.1109/ACC.2008.4587199

  18. Azhmyakov, V., Boltyanski, V.G., Poznyak, A.S.: Optimal control of impulsive hybrid systems. Nonlinear Anal. Hybrid Syst. 2(4), 1089–1097 (2008). https://doi.org/10.1016/j.nahs.2008.09.003

  19. Azhmyakov, V., Cabrera Martinez, J., Poznyak, A.S.: Optimal fixed-levels control for nonlinear systems with quadratic cost-functionals. Optim. Control Appl. Methods 37(5), 1035–1055 (2016). https://doi.org/10.1002/oca.2223

  20. Azhmyakov, V., Egerstedt, M., Fridman, L., Poznyak, A.S.: Approximability of nonlinear affine control systems. Nonlinear Anal. Hybrid Syst. 5(2), 275–288 (2011). https://doi.org/10.1016/j.nahs.2010.07.005

  21. Azhmyakov, V., Galvan-Guerra, R., Poznyak, A.S.: On the hybrid LQ-based control design for linear networked systems. J. Frankl. Inst. Eng. Appl. Math. 347(7), 1214–1226 (2010). https://doi.org/10.1016/j.jfranklin.2010.05.012

  22. Azhmyakov, V., Martinez, J.C., Poznyak, A.S., Serrezuela, R.R.: Optimization of a class of nonlinear switched systems with fixed-levels control inputs. In: Proceedings of the American control Conference (ACC), pp. 1770–1775 (2015). https://doi.org/10.1109/ACC.2015.7170989

  23. Azhmyakov, V., Polyakov, A., Poznyak, A.S.: Consistent approximations and variational description of some classes of sliding mode control processes. J. Frankl. Inst. Eng. Appl. Math. 351(4), 1964–1981 (2014). https://doi.org/10.1016/j.jfranklin.2013.01.011

  24. Azhmyakov, V., Poznyak, A.S., Gonzalez, O.: On the robust control design for a class of nonlinearly affine control systems: the attractive ellipsoid approach. J. Ind. Manag. Optim. 9(3), 579–593 (2013). https://doi.org/10.3934/jimo.2013.9.579

  25. Azhmyakov, V., Poznyak, A.S., Juárez, R.: On the practical stability of control processes governed by implicit differential equations: the invariant ellipsoid based approach. J. Frankl. Inst. Eng. Appl. Math. 350(8), 2229–2243 (2013). https://doi.org/10.1016/j.jfranklin.2013.04.016

  26. Baev, S., Shkolnikov, I., Shtessel, Y., Poznyak, A.S.: Parameter identification of non-linear system using traditional and high order sliding modes. In: Proceedings of the American Control Conference, p. 6 (2006). https://doi.org/10.1109/ACC.2006.1656620

  27. Baev, S., Shkolnikov, I.A., Shtessel, Y.B., Poznyak, A.S.: Sliding mode parameter identification of systems with measurement noise. Int. J. Syst. Sci. 38(11), 871–878 (2007). https://doi.org/10.1080/00207720701622809

  28. Bejarano, F.J., Fridman, L., Poznyak, A.S.: Output integral sliding mode with application to the LQ - optimal control. In: Proceedings of the International Workshop on Variable Structure Systems VSS’06, pp. 68–73 (2006). https://doi.org/10.1109/VSS.2006.1644495

  29. Bejarano, F.J., Fridman, L., Poznyak, A.S.: Estimation of unknown inputs, with application to fault detection, via partial hierarchical observation. In: Proceedings of the European Control Conference (ECC), pp. 5154–5161 (2007)

    Google Scholar 

  30. Bejarano, F.J., Fridman, L., Poznyak, A.S.: Exact state estimation for linear systems with unknown inputs based on hierarchical super-twisting algorithm. Int. J. Robust Nonlinear Control 17(18), 1734–1753 (2007). https://doi.org/10.1002/rnc.1190

  31. Bejarano, F.J., Fridman, L., Poznyak, A.S.: Hierarchical observer for strongly detectable systems via second order sliding mode. In: Proceedings of the 46th IEEE Conference on Decision and Control, pp. 3709–3714 (2007). https://doi.org/10.1109/CDC.2007.4434968

  32. Bejarano, F.J., Fridman, L.M., Poznyak, A.S.: Output integral sliding mode control based on algebraic hierarchical observer. Int. J. Control 80(3), 443–453 (2007). https://doi.org/10.1080/00207170601080205

  33. Bejarano, F.J., Fridman, L.M., Poznyak, A.S.: Output integral sliding mode for min-max optimization of multi-plant linear uncertain systems. IEEE Trans. Autom. Control 54(11), 2611–2620 (2009). https://doi.org/10.1109/TAC.2009.2031718

  34. Bejarano, F.J., Fridman, L.M., Poznyak, A.S.: Unknown input and state estimation for unobservable systems. SIAM J. Control Optim. 48(2), 1155–1178 (2009). https://doi.org/10.1137/070700322

  35. Bejarano, F.J., Poznyak, A.S., Fridman, L.: Hierarchical second-order sliding-mode observer for linear time invariant systems with unknown inputs. Int. J. Syst. Sci. Princ. Appl. Syst. Integr. 38(10), 793–802 (2007). https://doi.org/10.1080/00207720701409280

  36. Bejarano, F.J., Poznyak, A.S., Fridman, L.: Min-max output integral sliding mode control for multiplant linear uncertain systems. In: Proceedings of the American Control Conference, pp. 5875–5880 (2007). https://doi.org/10.1109/ACC.2007.4282716

  37. Bejarano, F.J., Poznyak, A.S., Fridman, L.M.: Observation of linear systems with unknown inputs via high-order sliding-modes. Int. J. Syst. Sci. 38(10), 773–791 (2007). https://doi.org/10.1080/00207720701409538

  38. Boltyanski, V.G., Poznyak, A.S.: Robust maximum principle for minimax mayer problem with uncertainty from a compact measured set. In: Proceedings of the American Control Conference (IEEE Cat. No.CH37301), vol. 1, pp. 310–315 (2002). https://doi.org/10.1109/ACC.2002.1024822

  39. Boltyanski, V.G., Poznyak, A.S.: A compact uncertainty set. The Robust Maximum Principle (2012). https://doi.org/10.1007/978-0-8176-8152-4_17

  40. Boltyanski, V.G., Poznyak, A.S.: Dynamic programming for robust optimization. The Robust Maximum Principle (2012). https://doi.org/10.1007/978-0-8176-8152-4_12

  41. Boltyanski, V.G., Poznyak, A.S.: Extremal problems in banach spaces. The Robust Maximum Principle (2012). https://doi.org/10.1007/978-0-8176-8152-4_7

  42. Boltyanski, V.G., Poznyak, A.S.: Finite collection of dynamic systems. The Robust Maximum Principle (2012). https://doi.org/10.1007/978-0-8176-8152-4_8

  43. Boltyanski, V.G., Poznyak, A.S.: Introduction. The Robust Maximum Principle (2012). https://doi.org/10.1007/978-0-8176-8152-4_1

  44. Boltyanski, V.G., Poznyak, A.S.: Linear multimodel time optimization. The Robust Maximum Principle (2012). https://doi.org/10.1007/978-0-8176-8152-4_10

  45. Boltyanski, V.G., Poznyak, A.S.: Linear quadratic optimal control. The Robust Maximum Principle (2012). https://doi.org/10.1007/978-0-8176-8152-4_4

  46. Boltyanski, V.G., Poznyak, A.S.: LQ-stochastic multimodel control. The Robust Maximum Principle (2012). https://doi.org/10.1007/978-0-8176-8152-4_16

  47. Boltyanski, V.G., Poznyak, A.S.: The maximum principle. The Robust Maximum Principle (2012). https://doi.org/10.1007/978-0-8176-8152-4_2

  48. Boltyanski, V.G., Poznyak, A.S.: A measurable space as uncertainty set. The Robust Maximum Principle (2012). https://doi.org/10.1007/978-0-8176-8152-4_11

  49. Boltyanski, V.G., Poznyak, A.S.: Min-max sliding-mode control. The Robust Maximum Principle (2012). https://doi.org/10.1007/978-0-8176-8152-4_13

  50. Boltyanski, V.G., Poznyak, A.S.: Multimodel Bolza and LQ problem. The Robust Maximum Principle (2012). https://doi.org/10.1007/978-0-8176-8152-4_9

  51. Boltyanski, V.G., Poznyak, A.S.: Multimodel differential games. The Robust Maximum Principle (2012). https://doi.org/10.1007/978-0-8176-8152-4_14

  52. Boltyanski, V.G., Poznyak, A.S.: Multiplant robust control. The Robust Maximum Principle (2012). https://doi.org/10.1007/978-0-8176-8152-4_15

  53. Boltyanski, V.G., Poznyak, A.S.: The Robust Maximum Principle. Foundations and Applications. Birkhauser, New York, Systems and Control (2012)

    Book  MATH  Google Scholar 

  54. Boltyanski, V.G., Poznyak, A.S.: The tent method in finite-dimensional spaces. The Robust Maximum Principle (2012). https://doi.org/10.1007/978-0-8176-8152-4_6

  55. Boltyanski, V.G., Poznyak, A.S.: Time-optimization problem. The Robust Maximum Principle (2012). https://doi.org/10.1007/978-0-8176-8152-4_5

  56. Bregeault, V., Brgeault, V., Plestan, F., Shtessel, Y., Poznyak, A.S.: Adaptive sliding mode control for an electropneumatic actuator. In: Proceedings of the 11th International Workshop on Variable Structure Systems (VSS), pp. 260–265 (2010). https://doi.org/10.1109/VSS.2010.5544714

  57. Cabrera, A., Poznyak, A.S., Poznyak, T., Aranda, J.: Some experiments on identification of a fed-batch culture via differential neural networks. In: Proceedings of the IEEE International Conference on Control Applications (CCA ’01), pp. 152–156 (2001). https://doi.org/10.1109/CCA.2001.973855

  58. Carrillo, L., Escobar, J.A., Clempner, J.B., Poznyak, A.S.: Optimization problems in chemical reactions using continuous-time Markov chains. J. Math. Chem. 54(6), 1233 (2016). https://doi.org/10.1007/s10910-016-0620-0

  59. Castillo, R.G., Clempner, J.B., Poznyak, A.S.: Solving the multi-traffic signal-control problem for a class of continuous-time Markov games. In: Proceedings of the 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) 2015, pp. 1–5 (2015). https://doi.org/10.1109/ICEEE.2015.7357932

  60. Chairez, I., Fuentes, R., Poznyak, A.S., Poznyak, T.: Robust identification of uncertain Schrödinger type complex partial differential equations. In: Proceedings of the 7th International Conference on Electrical Engineering, Computing Science and Automatic Control, pp. 170–175 (2010). https://doi.org/10.1109/ICEEE.2010.5608635

  61. Chairez, I., Fuentes, R., Poznyak, A.S., Poznyak, T.: Robust identification of uncertain Schrödinger type complex partial differential equations. In: Proceedings of the 7th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2010 (Formerly known as ICEEE) IEEE, Tuxtla Gutierrez, Mexico, 8–10 Sept 2010, pp. 170–175 (2010). https://doi.org/10.1109/ICEEE.2010.5608635

  62. Chairez, I., Fuentes, R., Poznyak, A.S., Poznyak, T., Escudero, M., Viana, L.: Neural network identification of uncertain 2D partial differential equations. In: Proceedings of the 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) 2009, pp. 1–6 (2009). https://doi.org/10.1109/ICEEE.2009.5393456

  63. Chairez, I., Fuentes, R., Poznyak, A.S., Poznyak, T., Escudero, M., Viana, L.: DNN-state identification of 2D distributed parameter systems. Int. J. Syst. Sci. 43(2), 296–307 (2012). https://doi.org/10.1080/00207721.2010.495187

  64. Chairez, I., Garca, A., Poznyak, A.S., Poznyak, T.: Model predictive control by differential neural networks approach. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2010). https://doi.org/10.1109/IJCNN.2010.5596521

  65. Chairez, I., Poznyak, A.S., Poznyak, T.: Dynamic neural observer with sliding mode learning. In: Proceedings of the 3rd International IEEE Conference on Intelligent Systems, pp. 600–605 (2006). https://doi.org/10.1109/IS.2006.348487

  66. Chairez, I., Poznyak, A.S., Poznyak, T.: New sliding-mode learning law for dynamic neural network observer. IEEE Trans. Circuits Syst. II: Express Briefs 53(12), 1338–1342 (2006). https://doi.org/10.1109/TCSII.2006.883096

  67. Chairez, I., Poznyak, A.S., Poznyak, T.: High order dynamic neuro observer: application for ozone generator. In: Proceedings of the International Workshop on Variable Structure Systems, pp. 291–295 (2008). https://doi.org/10.1109/VSS.2008.4570723

  68. Chairez, I., Poznyak, A.S., Poznyak, T.: High order sliding mode neurocontrol for uncertain nonlinear SISO systems: theory and applications. Modern Sliding Mode Control Theory (2008). https://doi.org/10.1007/978-3-540-79016-7_9

  69. Chairez, I., Poznyak, A.S., Poznyak, T.: Stable weights dynamics for a class of differential neural network observer. IET Control Theory Appl. 3(10), 1437–1447 (2009). https://doi.org/10.1049/iet-cta.2008.0261

  70. Clempner, J.B., Poznyak, A.S.: Convergence method, properties and computational complexity for Lyapunov games. Appl. Math. Comput. Sci. 21(2), 349–361 (2011). https://doi.org/10.2478/v10006-011-0026-x

  71. Clempner, J.B., Poznyak, A.S.: Analysis of best-reply strategies in repeated finite Markov chains games. In: Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 568–573 (2013). https://doi.org/10.1109/CDC.2013.6759942

  72. Clempner, J.B., Poznyak, A.S.: Simple computing of the customer lifetime value: a fixed local-optimal policy approach. J. Syst. Sci. Syst. Eng. 23(4), 439 (2014). https://doi.org/10.1007/s11518-014-5260-y

  73. Clempner, J.B., Poznyak, A.S.: Computing the strong Nash equilibrium for Markov chains games. Appl. Math. Comput. 265, 911–927 (2015). https://doi.org/10.1016/j.amc.2015.06.005

  74. Clempner, J.B., Poznyak, A.S.: Modeling the multi-traffic signal-control synchronization: a Markov chains game theory approach. Eng. Appl. Artif. Intell. 43, 147–156 (2015). https://doi.org/10.1016/j.engappai.2015.04.009

  75. Clempner, J.B., Poznyak, A.S.: Stackelberg security games: computing the shortest-path equilibrium. Expert Syst. Appl. 42(8), 3967–3979 (2015). https://doi.org/10.1016/j.eswa.2014.12.034

  76. Clempner, J.B., Poznyak, A.S.: Analyzing an optimistic attitude for the leader firm in duopoly models: a strong Stackelberg equilibrium based on a Lyapunov game theory approach. Econ. Comput. Econ. Cybern. Stud. Res. 4(50), 41–60 (2016)

    Google Scholar 

  77. Clempner, J.B., Poznyak, A.S.: Conforming coalitions in Markov Stackelberg security games: setting max cooperative defenders vs. non-cooperative attackers. Appl. Soft Comput. 47, 1–11 (2016). https://doi.org/10.1016/j.asoc.2016.05.037

  78. Clempner, J.B., Poznyak, A.S.: Constructing the Pareto front for multi-objective Markov chains handling a strong Pareto policy approach. Comput. Appl. Math. 1 (2016). https://doi.org/10.1007/s40314-016-0360-6

  79. Clempner, J.B., Poznyak, A.S.: Convergence analysis for pure stationary strategies in repeated potential games: Nash, Lyapunov and correlated equilibria. Expert Syst. Appl. 46, 474–484 (2016). https://doi.org/10.1016/j.eswa.2015.11.006

  80. Clempner, J.B., Poznyak, A.S.: Solving the Pareto front for multiobjective Markov chains using the minimum Euclidean distance gradient-based optimization method. Math. Comput. Simul. 119, 142–160 (2016). https://doi.org/10.1016/j.matcom.2015.08.004

  81. Clempner, J.B., Poznyak, A.S.: Multiobjective Markov chains optimization problem with strong Pareto frontier: principles of decision making. Expert Syst. Appl. 68, 123–135 (2017). https://doi.org/10.1016/j.eswa.2016.10.027

  82. Clempner, J.B., Poznyak, A.S.: Using Manhattan distance for computing the multiobjective Markov chains problem. Int. J. Comput. Math. (2017) (To be published)

    Google Scholar 

  83. Clempner, J.B., Poznyak, A.S.: Using the extraproximal method for computing the shortest-path mixed Lyapunov equilibrium in Stackelberg security games. Math. Comput. Simul. 138, 14–30, (2017). https://doi.org/10.1016/j.matcom.2016.12.010. (To be published)

  84. Clempner, J.B., Poznyak, A.S.: A Tikhonov regularized penalty function approach for solving polylinear programming problems. J. Comput. Appl. Math. 328, 267–286 (2018)

    Google Scholar 

  85. Clempner, J. B., Poznyak, A.: Negotiating The Transfer Pricing Using The Nash Bargaining Solution. Int J Appl Math Comput Sci. (To be published)

    Google Scholar 

  86. Clempner, J.B., Poznyak, A.: A Tikhonov Regularization Parameter Approach For Solving Lagrange Constrained Optimization Problems. Eng Optimiz. (To be published)

    Google Scholar 

  87. Davila, J., Poznyak, A.S.: Sliding modes parameter adjustment in the presence of fast actuators using invariant ellipsoids method. In: Proceedings of the 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) 2009, pp. 1–6 (2009). https://doi.org/10.1109/ICEEE.2009.5393474

  88. Davila, J., Poznyak, A.S.: Attracting ellipsoid method application to designing of sliding mode controllers. In: Proceedings of the 11th International Workshop on Variable Structure Systems (VSS), pp. 83–88 (2010). https://doi.org/10.1109/VSS.2010.5544627

  89. Davila, J., Poznyak, A.S.: Design of sliding mode controllers with actuators using attracting ellipsoid method. In: Proceedings of the 49th IEEE Conference on Decision and Control (CDC), pp. 72–77 (2010). https://doi.org/10.1109/CDC.2010.5717774

  90. Davila, J., Poznyak, A.S.: Dynamic sliding mode control design using attracting ellipsoid method. Automatica 47(7), 1467–1472 (2011). https://doi.org/10.1016/j.automatica.2011.02.023

  91. Davila, J., Poznyak, A.S.: Sliding mode parameter adjustment for perturbed linear systems with actuators via invariant ellipsoid method. Int. J. Robust Nonlinear Control 21(5), 473–487 (2011). https://doi.org/10.1002/rnc.1599

  92. Davila, J., Fridman, L., Poznyak, A.S.: Observation and identification of mechanical systems via second order sliding modes. Int. J. Control 79(10), 1251–1262 (2006). https://doi.org/10.1080/00207170600801635

  93. Escobar, J., Poznyak, A.S.: Continuous-time identification using LS-method under colored noise perturbations. In: Proceedings of the 46th IEEE Conference on Decision and Control, pp. 5516–5521 (2007). https://doi.org/10.1109/CDC.2007.4434168

  94. Escobar, J., Poznyak, A.S.: Robust continuous-time matrix estimation under dependent noise perturbations: sliding modes filtering and LSM with forgetting. CSSP 28(2), 257–282 (2009). https://doi.org/10.1007/s00034-008-9080-5

  95. Escobar, J., Poznyak, A.S.: Time-varying parameter estimation in continuous-time under colored perturbations using “equivalent control concept” and LSM with forgetting factor. In: Proceedings of the 11th International Workshop on Variable Structure Systems (VSS), pp. 209–214 (2010). https://doi.org/10.1109/VSS.2010.5544662

  96. Escobar, J., Poznyak, A.S.: Time-varying matrix estimation in stochastic continuous-time models under coloured noise using LSM with forgetting factor. Int. J. Syst. Sci. 42(12), 2009–2020 (2011). https://doi.org/10.1080/00207721003706852

  97. Escobar, J., Poznyak, A.S.: Benefits of variable structure techniques for parameter estimation in stochastic systems using least squares method and instrumental variables. Int. J. Adapt. Control Signal Process. 29(8), 1038–1054 (2015). https://doi.org/10.1002/acs.2521

  98. Fridman, L., Poznyak, A.S., Bejarano, F.: Decomposition of the min-max multi-model problem via integral sliding mode. Int. J. Robust Nonlinear Control 15(13), 559–574 (2005). https://doi.org/10.1002/rnc.1009

  99. Fridman, L., Poznyak, A.S., Bejarano, F.J.: Decomposition of the mini-max multimodel optimal problem via integral sliding mode control. Proceedings of the American Control Conference 1, 620–625 (2004)

    MATH  Google Scholar 

  100. Fridman, L., Poznyak, A.S., Bejarano, F.J.: Hierarchical second-order sliding-mode observer for linear systems with unknown inputs. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 5561–5566 (2006). https://doi.org/10.1109/CDC.2006.377463

  101. Fridman, L., Poznyak, A.S., Bejarano, F.J.: Fault detection. Robust Output LQ Optimal Control via Integral Sliding Modes (2014). https://doi.org/10.1007/978-0-8176-4962-3_8

  102. Fridman, L., Poznyak, A.S., Bejarano, F.J.: Integral sliding mode control. Robust Output LQ Optimal Control via Integral Sliding Modes (2014). https://doi.org/10.1007/978-0-8176-4962-3_2

  103. Fridman, L., Poznyak, A.S., Bejarano, F.J.: Introduction. Robust Output LQ Optimal Control via Integral Sliding Modes (2014). https://doi.org/10.1007/978-0-8176-4962-3_1

  104. Fridman, L., Poznyak, A.S., Bejarano, F.J.: Magnetic bearing. Robust Output LQ Optimal Control via Integral Sliding Modes (2014). https://doi.org/10.1007/978-0-8176-4962-3_10

  105. Fridman, L., Poznyak, A.S., Bejarano, F.J.: Multimodel and ISM control. Robust Output LQ Optimal Control via Integral Sliding Modes (2014). https://doi.org/10.1007/978-0-8176-4962-3_6

  106. Fridman, L., Poznyak, A.S., Bejarano, F.J.: Multiplant and ISM output control. Robust Output LQ Optimal Control via Integral Sliding Modes (2014). https://doi.org/10.1007/978-0-8176-4962-3_7

  107. Fridman, L., Poznyak, A.S., Bejarano, F.J.: Observer based on ISM. Robust Output LQ Optimal Control via Integral Sliding Modes (2014). https://doi.org/10.1007/978-0-8176-4962-3_3

  108. Fridman, L., Poznyak, A.S., Bejarano, F.J.: Output integral sliding mode based control. Robust Output LQ Optimal Control via Integral Sliding Modes (2014). https://doi.org/10.1007/978-0-8176-4962-3_4

  109. Fridman, L., Poznyak, A.S., Bejarano, F.J.: Stewart platform. Robust Output LQ Optimal Control via Integral Sliding Modes (2014). https://doi.org/10.1007/978-0-8176-4962-3_9

  110. Fridman, L., Poznyak, A.S., Shtessel, Y., Bejarano, F.J.: Sliding mode multimodel control. In: Advances in Variable Structure and Sliding Mode Control, Lecture Notes in Control and Information Sciences, vol. 334, pp. 247–267. Springer, Berlin (2006). https://doi.org/10.1007/11612735_12

  111. Fuentes, R., Poznyak, A.S., Chairez, I., Poznyak, T.: Neural numerical modeling for uncertain distributed parameter systems. In: Proceedings of the International Joint Conference on Neural Networks, pp. 909–916 (2009). https://doi.org/10.1109/IJCNN.2009.5178909

  112. Fuentes, R.Q., Chairez, I., Poznyak, A.S.: Neuro-observer based on backstepping technique for distributed parameters systems. In: Proceedings of the 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) 2012, pp. 1–6 (2012). https://doi.org/10.1109/ICEEE.2012.6421213

  113. Fuentes, R.Q., Chairez, I., Poznyak, A.S., Poznyak, T.: 3D nonparametric neural identification. J. Control Sci. Eng. (2012). https://doi.org/10.1155/2012/618403

  114. Fuentes, R.Q., Poznyak, A.S., Figueroa, I., Garcia, A., Chairez, I.: Continuous neural networks and finite element application for the tissue deformation reconstruction dynamic. In: Proceedings of the VI Andean Region International Conference, pp. 157–160 (2012). https://doi.org/10.1109/Andescon.2012.44

  115. Garca, A., Chairez, I., Poznyak, A.S.: Hybrid differential neural network identifier for partially uncertain hybrid systems. Recent Advances in Intelligent Control Systems (2009). https://doi.org/10.1007/978-1-84882-548-2_7

  116. Garcia, A., Chairez, I., Poznyak, A.S., Poznyak, T.: Robust identification of uncertain nonlinear systems with state constrains by differential neural networks. In: Proceedings of the International Joint Conference on Neural Networks, pp. 917–924 (2009). https://doi.org/10.1109/IJCNN.2009.5178825

  117. Garcia, A., Poznyak, A.S., Chairez, I., Poznyak, T.: Projectional differential neural network observer with stable adaptation weights. In: Proceedings of the 47th IEEE Conference on Decision and Control, pp. 3652–3657 (2008). https://doi.org/10.1109/CDC.2008.4738950

  118. Garcia, A., Poznyak, A.S., Oria, I.C., Poznyak, T.: Projectional differential neural network observer with stable adaptation weights. In: Proceedings of the 47th IEEE Conference on Decision and Control, CDC 2008, 9–11 Dec 2008, Cancún, México, pp. 3652–3657 (2008). https://doi.org/10.1109/CDC.2008.4738950

  119. García, P., Poznyak, A.S.: Multi-model LQ-constrained min-max control. Optim. Control Appl. Methods 37(2), 359–380 (2016). https://doi.org/10.1002/oca.2173

  120. Gmez-Ramrez, E., Najim, K., Poznyak, A.S.: Saddle-point calculation for constrained finite Markov chains. J. Econ. Dyn. Control 27(10), 1833–1853 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  121. Godoy, M., Ramrez, E.G., Poznyak, A.S., Najim, K.: Noncooperative constrained finite games: alternate linear programming approach. In: Proceedings of the 41st IEEE Conference on Decision and Control, vol. 4, pp. 3958–3963 (2002). https://doi.org/10.1109/CDC.2002.1184985

  122. Godoy-Alcántar, M., Poznyak, A.S., Gómez-Ramírez, E.: Generalization of the Mangasarian-Stone theorem for Markov chain finite \(N\)-person games: LPM-approach. Dyn. Syst. Appl. 12(3–4), 489–508 (2003)

    MathSciNet  MATH  Google Scholar 

  123. Gomez-Ramirez, E., Godoy-Alcantar, M., Poznyak, A.S.: Genetic algorithm for static games with \(N\) players. Nonlinear Stud. Int. J. 14(1), 5–19 (2007)

    MathSciNet  MATH  Google Scholar 

  124. Gonsales-Garsiya, S., Polyakov, A.E., Poznyak, A.S.: Application of the method of invariant ellipsoids for the robust linear output stabilization of a spacecraft. Rossiĭskaya Akademiya Nauk. Avtomatika i Telemekhanika 3, 81–97 (2011). https://doi.org/10.1134/S0005117911030064

  125. Gonzalez, O., Poznyak, A.S., Azhmyakov, V.: On the robust control design for a class of nonlinear affine control systems: the invariant ellipsoid approach. In: Proceedings of the 6th Int. Conf. Electrical Engineering, Computing Science and Automatic Control (CCE) 2009, pp. 1–6 (2009). https://doi.org/10.1109/ICEEE.2009.5393387

  126. Gonzalez-Garcia, S., Polyakov, A., Poznyak, A.S.: Output linear feedback for a class of nonlinear systems based on the invariant ellipsoid method. In: Proceedings of the 5th International Conference on Electrical Engineering, Computing Science and Automatic Control 2008, pp. 7–12 (2008). https://doi.org/10.1109/ICEEE.2008.4723431

  127. Gonzalez-Garcia, S., Polyakov, A., Poznyak, A.S.: Robust stabilization of a spacecraft with flexible elements using invariant ellipsoid technique. In: Proceedings of the 5th International Conference on Computing Science and Automatic Control 2008, pp. 97–101 (2008). https://doi.org/10.1109/ICEEE.2008.4723429

  128. Gonzalez-Garcia, S., Polyakov, A., Poznyak, A.S.: Linear feedback spacecraft stabilization using the method of invariant ellipsoids. In: Proceedings of the 41st Southeastern Symposium on System Theory, pp. 195–198 (2009). https://doi.org/10.1109/SSST.2009.4806834

  129. Gonzalez-Garcia, S., Polyakov, A., Poznyak, A.S.: Output linear controller for a class of nonlinear systems using the invariant ellipsoid technique. In: Proceedings of the American Control Conference, pp. 1160–1165 (2009). https://doi.org/10.1109/ACC.2009.5160434

  130. Guerra, R.M., Poznyak, A.S., Leon, V.D.D.: Robustness property of high-gain observers for closed-loop nonlinear systems: theoretical study and robotics control application. Int. J. Syst. Sci. 31(12), 1519–1529 (2000). https://doi.org/10.1080/00207720050217296

  131. Hernández-Santamaría, V., de Teresa, L., Poznyak, A.S.: Hierarchic control for a coupled parabolic system. Portugaliae Mathematica. J. Port. Math. Soc. 73(2), 115–137 (2016). https://doi.org/10.4171/PM/1979

  132. Hernández-Santamaría, V., de Teresa, L., Poznyak, A.S.: Hierarchic control for a coupled parabolic system. Portugaliae Mathematica. Nova Série 73(2), 115–137 (2016). https://doi.org/10.4171/PM/1979

  133. Jimenez, M., Poznyak, A.S.: \(\epsilon \)-equilibrium in LQ differential games with bounded uncertain disturbances: robustness of standard strategies and new strategies with adaptation. Int. J. Control 79(7), 786–797 (2006). https://doi.org/10.1080/00207170600690624

  134. Jimenez, M., Poznyak, A.S.: Robust and adaptive strategies with pre-identification via sliding mode technique in LQ differential games. In: Proceedings of the American Control Conference, pp. 6 (2006). https://doi.org/10.1109/ACC.2006.1657475

  135. Jimenez-Lizarraga, M., Poznyak, A.S.: Near-Nash equilibrium strategies for LQ differential games with inaccurate state information. Math. Probl. Eng. Art. ID 21509, 24 (2006). https://doi.org/10.1155/MPE/2006/21509

  136. Jimenez-Lizarraga, M., Poznyak, A.S.: Equilibrium in LQ differential games with multiple scenarios. In: Proceedings of the 46th IEEE Conference on Decision and Control, pp. 4081–4086 (2007). https://doi.org/10.1109/CDC.2007.4434346

  137. Jimenez-Lizarraga, M., Poznyak, A.S.: Quasi-equilibrium in LQ differential games with bounded uncertain disturbances: robust and adaptive strategies with pre-identification via sliding mode technique. Int. J. Syst. Sci. Princ. Appl. Syst. Integr. 38(7), 585–599 (2007). https://doi.org/10.1080/00207720701431938

  138. Jiménez-Lizárraga, M., Poznyak, A.S.: Robust Nash equilibrium in multi-model LQ differential games: analysis and extraproximal numerical procedure. Optim. Control Appl. Methods 28(2), 117–141 (2007). https://doi.org/10.1002/oca.795

  139. Jiménez-Lizárraga, M., Poznyak, A.S.: Necessary conditions for robust Stackelberg equilibrium in a multi-model differential game. Optim. Control Appl. Methods 33(5), 595–613 (2012). https://doi.org/10.1002/oca.1018

  140. Jimenez-Lizarraga, M., Poznyak, A.S., Alcorta, M.A.: Leader-follower strategies for a multi-plant differential game. In: Proceedings of the American Control Conference, pp. 3839–3844 (2008). https://doi.org/10.1109/ACC.2008.4587092

  141. Jiménez-Lizárraga, M.A., Poznyak, A.S.: e-equilibrium strategies for LQ differential games with output measurement. In: H.R. Arabnia, G.A. Gravvanis (eds.) Proceedings of The 2005 International Conference on Scientific Computing, CSC 2005, Las Vegas, Nevada, USA, 20–23 June 2005, pp. 191–197, CSREA Press (2005)

    Google Scholar 

  142. Jiménez-Lizárraga, M.A., Poznyak, A.S.: Quasi-equilibrium in LQ differential games with bounded uncertain disturbances: robust and adaptive strategies with pre-identification via sliding mode technique. Int. J. Syst. Sci. 38(7), 585–599 (2007). https://doi.org/10.1080/00207720701431938

  143. Juárez, R., Azhmyakov, V., Poznyak, A.S.: Practical stability of control processes governed by semiexplicit DAEs. Math. Probl. Eng. Art. ID 675408, 7 (2013)

    MATH  Google Scholar 

  144. Juarez, R., Poznyak, A.S., Azhmyakov, V.: On applications of attractive ellipsoid method to dynamic processes governed by implicit differential equations. In: Proceedings of the 8th International Conference on Electrical Engineering, Computing Science and Automatic Control 2011, pp. 1–6 (2011). https://doi.org/10.1109/ICEEE.2011.6106585

  145. Keshtkar, S., Poznyak, A.S.: Adaptive sliding mode controller based on super-twist observer for tethered satellite system. Int. J. Control 89(9), 1904–1915 (2016). https://doi.org/10.1080/00207179.2016.1185669

  146. Keshtkar, S., Poznyak, A.S.: Tethered space orientation via adaptive sliding mode. Int. J. Robust Nonlinear Control 26(8), 1632–1646 (2016). https://doi.org/10.1002/rnc.3371

  147. Keshtkar, S., Hernandez, E.E., Oropeza, A., Poznyak, A.S.: Orientation of radio-telescope secondary mirror via adaptive sliding mode control. Neurocomputing 233, 43–51 (2017). https://doi.org/10.1016/j.neucom.2016.08.116

  148. Keshtkar, S., Keshtkar, J., Poznyak, A.S.: Adaptive sliding mode control for solar tracker orientation. In: Proceedings of the American Control Conference (ACC), pp. 6543–6548 (2016). https://doi.org/10.1109/ACC.2016.7526700

  149. Keshtkar, S., Poznyak, A.S., Hernandez, E., Oropeza, A.: Orientation of radio-telescope secondary mirror via parallel platform. In: Proceedings of the 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–5 (2015). https://doi.org/10.1109/ICEEE.2015.7357899

  150. Keshtkar, S., Poznyak, A.S., Keshtkar, N.: Magnetic control of tethered cube-satellite stabilized by rotating. In: Proceedings of the 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–5 (2014). https://doi.org/10.1109/ICEEE.2014.6978291

  151. León, J.A., Lozada-Castillo, N.B., Poznyak, A.S.: Estabilidad de ecuaciones diferenciales estocásticas lineales anticipativas. Matemáticas: Enseñanza Universitaria (Nueva Serie) 15(2), 51–64 (2007)

    Google Scholar 

  152. León, J.A., Lozada Castillo, N.B., Poznyak, A.S.: Stability of anticipating linear stochastic differential equations. Matemáticas. Enseñanza Universitaria 15(2), 51–64 (2007)

    MathSciNet  MATH  Google Scholar 

  153. Lozada-Castillo, N., Poznyak, A.S., Chairez, I.: Control of multiplicative noise stochastic gene regulation systems by the attractive ellipsoid technique. Int. J. Control Autom Syst. 12(5), 1018 (2014). https://doi.org/10.1007/s12555-013-0226-2

  154. Lozada-Castillo, N.B., Alazki, H., Poznyak, A.S.: Robust stabilization of linear stochastic differential models with additive and multiplicative diffusion via attractive ellipsoid techniques. In: Proceedings of the 8th International Conference on Electrical Engineering, Computing Science and Automatic Control, pp. 1–6 (2011). https://doi.org/10.1109/ICEEE.2011.6106685

  155. Lozada-Castillo, N.B., Alazki, H., Poznyak, A.S.: Robust control design through the attractive ellipsoid technique for a class of linear stochastic models with multiplicative and additive noises. IMA J. Math. Control Inf. 30(1), 1–19 (2013). https://doi.org/10.1093/imamci/dns008

  156. Martinez-Guerra, R., Aguilar, R., Poznyak, A.S.: Estimation for HIV transmission using a reduced order uncertainty observer. In: Proceedings of the American Control Conference (Cat. No. 01CH37148), vol. 6, pp. 4603–4604 (2001). https://doi.org/10.1109/ACC.2001.945705

  157. Martínez-Guerra, R., Poznyak, A.S., Leon, V.D.D.: Robustness property of high-gain observers for closed-loop nonlinear systems: theoretical study and robotics control application. Int. J. Syst. Sci. 31(12), 1519–1529 (2000). https://doi.org/10.1080/00207720050217296

  158. Medel, J.d.J., Poznyak, A.S.: Adaptive tracking for dc-derivate motor based on matrix forgetting. Computación y Sistemas 4(3), 205–212 (2001). http://cys.cic.ipn.mx/ojs/index.php/CyS/article/view/945/1041

  159. Mera, M., Castaños, F., Poznyak, A.S.: Quantised and sampled output feedback for nonlinear systems. Int. J. Control 87(12), 2475–2487 (2014). https://doi.org/10.1080/00207179.2014.928948

  160. Mera, M., Poznyak, A.S., Azhmyakov, V., Fridman, E.: Robust control for a class of continuous-time dynamical systems with sample-data outputs. In: Proceedings of the 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–7 (2009). https://doi.org/10.1109/ICEEE.2009.5393420

  161. Mera, M., Poznyak, A.S., Azhmyakov, V., Polyakov, A.: A robust dynamic controller for a class of nonlinear systems with sample-data outputs. In: Proceedings of the 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–7 (2012). https://doi.org/10.1109/ICEEE.2012.6421198

  162. Miranda, F.A., Castaños, F., Poznyak, A.S.: Min-max piecewise constant optimal control for multi-model linear systems. IMA J. Math. Control Inf. 33(4), 1157–1176 (2016). https://doi.org/10.1093/imamci/dnv030

  163. Moya, S., Poznyak, A.S.: Numerical method for finding a static Stackelberg-Nash equilibrium: the case of favorable followers. In: Proceedings of the 46th IEEE Conference on Decision and Control, pp. 145–149 (2007). https://doi.org/10.1109/CDC.2007.4434769

  164. Moya, S., Poznyak, A.S.: Numerical methods for Stackelberg-Nash equilibrium calculation with favorable and unfavorable followers. In: Proceedings of the 5th International Conference on Electrical Engineering, Computing Science and Automatic Control, pp. 125–130 (2008). https://doi.org/10.1109/ICEEE.2008.4723369

  165. Moya, S., Poznyak, A.S.: Stackelberg-nash concept applied to the traffic control problem with a dominating intersection. In: Proceedings of the 5th International Conference on Electrical Engineering, Computing Science and Automatic Control, pp. 137–142 (2008). https://doi.org/10.1109/ICEEE.2008.4723420

  166. Moya, S., Poznyak, A.S.: Extraproximal method application for a Stackelberg -Nash equilibrium calculation in static hierarchical games. Part B (Cybernetics). IEEE Trans. Syst. Man Cybern. 39(6), 1493–1504 (2009). https://doi.org/10.1109/TSMCB.2009.2019827

  167. Moya, S., Poznyak, A.S.: Extraproximal method application for a Stackelberg-Nash equilibrium calculation in static hierarchical games. IEEE Trans. Syst. man Cybern. Part B Cybern. Publ. IEEE Syst Man Cybern. Soc. 39, 1493–1504 (2009). https://doi.org/10.1109/TSMCB.2009.2019827

  168. Murano, D.A., Poznyak, A.S.: Adaptive stochastic tracking: DNN-approach. In: Proceedings of the 41st IEEE Conference on Decision and Control, vol. 2, pp. 2202–2207 (2002). https://doi.org/10.1109/CDC.2002.1184858

  169. Najim, K., Poznyak, A.S.: Learning Automata, 1 edn. Pergamon, Oxford (1994). Literaturangaben S. 206–214

    Google Scholar 

  170. Najim, K., Poznyak, A.S., Gomez, E.: Adaptive policy for two finite Markov chains zero-sum stochastic game with unknown transition matrices and average payoffs. Automatica 37(7), 1007–1018 (2001). https://doi.org/10.1016/S0005-1098(01)00050-4

  171. Najim, K., Poznyak, A.S., Ikonen, E.: Optimization based on a team of automata with binary outputs. Automatica 40(8), 1349–1359 (2004). https://doi.org/10.1016/j.automatica.2004.03.013

  172. Ordaz, P., Poznyak, A.S.: The Furuta’s pendulum stabilization without the use of a mathematical model: attractive ellipsoid method with KL-adaptation. In: Proceedings of the 51st IEEE Conference on Decision and Control (CDC), pp. 7285–7290 (2012). https://doi.org/10.1109/CDC.2012.6426722

  173. Ordaz, P., Poznyak, A.S.: ‘KL’-gain adaptation for attractive ellipsoid method. IMA J. Math. Control Inf. 32(3), 447–469 (2015). https://doi.org/10.1093/imamci/dnt046

  174. Ordaz, P., Alazki, H., Poznyak, A.S.: A sample-time adjusted feedback for robust bounded output stabilization. Kybernetika 49(6), 911–934 (2013). http://www.kybernetika.cz/content/2013/6/911

  175. Oria, I.C., Poznyak, A.S., Poznyak, T.: Practical stability analysis for DNN observation. In: Proceedings of the 47th IEEE Conference on Decision and Control, CDC 2008, 9–11 Dec 2008, Cancún, México, pp. 2551–2556. IEEE (2008). https://doi.org/10.1109/CDC.2008.4738995

  176. Perez, C., Azhmyakov, V., Poznyak, A.S.: Practical stabilization of a class of switched systems: dwell-time approach. IMA J. Math. Control Inf. 32(4), 689–702 (2015). https://doi.org/10.1093/imamci/dnu011

  177. Perez, C., Poznyak, A.S., Azhmyakov, V.: On the practical stability for a class of switched system. In: Proceedings of the 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–6 (2012). https://doi.org/10.1109/ICEEE.2012.6421209

  178. Perez-Cruz, J.H., Poznyak, A.S.: Estimation of the precursor power and internal reactivity in a nuclear reactor by a neural observer. In: Proceedings of the 4th International Conference on Electrical and Electronics Engineering, pp. 310–313 (2007). https://doi.org/10.1109/ICEEE.2007.4345030

  179. Perez-Cruz, J.H., Poznyak, A.S.: Identification of measurable dynamics of a nuclear research reactor using differential neural networks. In: Proceedings of the IEEE International Conference on Control Applications, pp. 473–478 (2007). https://doi.org/10.1109/CCA.2007.4389276

  180. Perez-Cruz, J.H., Poznyak, A.S.: Neural control for power ascent of a TRIGA reactor. In: Proceedings of the American Control Conference, pp. 2190–2195 (2008). https://doi.org/10.1109/ACC.2008.4586817

  181. Perez-Cruz, J.H., Poznyak, A.S.: Trajectory tracking based on differential neural networks for a class of nonlinear systems. In: Proceedings of the American Control Conference, pp. 2940–2945 (2009). https://doi.org/10.1109/ACC.2009.5160014

  182. Pérez-Cruz, J.H., Poznyak, A.S.: Control of nuclear research reactors based on a generalized hopfield neural network. Intell. Autom. Soft Comput. 16(1), 39–60 (2010). https://doi.org/10.1080/10798587.2010.10643062

  183. Plestan, F., Shtessel, Y., Brégeault, V., Poznyak, A.S.: New methodologies for adaptive sliding mode control. Int. J. Control 83(9), 1907–1919 (2010). https://doi.org/10.1080/00207179.2010.501385

  184. Plestan, F., Shtessel, Y.B., Brégeault, V., Poznyak, A.S.: New methodologies for adaptive sliding mode control. Int. J. Control 83(9), 1907–1919 (2010). https://doi.org/10.1080/00207179.2010.501385

  185. Polyakov, A., Poznyak, A.S.: Lyapunov function design for finite-time convergence analysis of “twisting” and “super-twisting” second order sliding mode controllers. In: Proceedings of the International Workshop on Variable Structure Systems, pp. 153–158 (2008). https://doi.org/10.1109/VSS.2008.4570699

  186. Polyakov, A., Poznyak, A.S.: Lyapunov function design for finite-time convergence analysis: “twisting” controller for second-order sliding mode realization. Automatica 45(2), 444–448 (2009). https://doi.org/10.1016/j.automatica.2008.07.013

  187. Polyakov, A., Poznyak, A.S.: Minimization of the unmatched disturbances in the sliding mode control systems via invariant ellipsoid method. In: Proceedings of the 2009 IEEE Control Applications, (CCA) and Intelligent Control (ISIC), pp. 1122–1127 (2009). https://doi.org/10.1109/CCA.2009.5280842

  188. Polyakov, A., Poznyak, A.S.: Reaching time estimation for “super-twisting” second order sliding mode controller via Lyapunov function designing. IEEE Trans. Autom. Control 54(8), 1951–1955 (2009). https://doi.org/10.1109/TAC.2009.2023781

  189. Polyakov, A., Poznyak, A.S.: Invariant ellipsoid method for minimization of unmatched disturbances effects in sliding mode control. Automatica 47(7), 1450–1454 (2011). https://doi.org/10.1016/j.automatica.2011.02.013

  190. Polyakov, A., Poznyak, A.S.: Unified Lyapunov function for a finite-time stability analysis of relay second-order sliding mode control systems. IMA J. Math. Control Inf. 29(4), 529–550 (2012). https://doi.org/10.1093/imamci/dns007

  191. Polyakov, A., Poznyak, A.S., Richard, J.P.: Robust output stabilization of time-varying input delay systems using attractive ellipsoid method. In: Proceedings of the 52nd IEEE Conference on Decision and Control, pp. 934–939 (2013). https://doi.org/10.1109/CDC.2013.6760002

  192. Polyakov, A.E., Poznyak, A.S.: The method of Lyapunov functions for systems with higher-order sliding modes. Rossiĭskaya Akademiya Nauk. Avtomatika i Telemekhanika 5, 47–68 (2011). https://doi.org/10.1134/S0005117911050043

  193. Poznyak, A.S.: Matrix forgetting factor. Int. J. Syst. Sci. 30(2), 165–174 (1999). https://doi.org/10.1080/002077299292515

  194. Poznyak, A.S.: Differential neural networks for robust nonlinear control (2001). http://www.worldscientific.com/worldscibooks/10.1142/4703#t=toc (Includes bibliographical references and index)

  195. Poznyak, A.S.: Stochastic output noise effects in sliding mode state estimation. Int. J. Control 76(9–10), 986–999 (2003). https://doi.org/10.1080/0020717031000099001 (Dedicated to Vadim Utkin on the occasion of his 65th birthday)

  196. Poznyak, A.S.: Stochastic output noise effects in sliding mode observation. In: Variable Structure Systems: From Principles to Implementation, IEE Control Eng. Ser., vol. 66, pp. 81–97. IEE, London (2004)

    Google Scholar 

  197. Poznyak, A.S.: Kaddour najim, enso ikonen ait-kadi daoud (eds.), Stochastic Processes: Estimation, Optimization and Analysis, kogan page science, London and Sterling, va, ISBN: 1-903996-55-4, 2004 (332 pp.). Automatica 42(7), 1237–1240 (2006). https://doi.org/10.1016/j.automatica.2006.03.002

  198. Poznyak, A.S.: Robust maximum principle: multi-model dynamic optimization. Int. J. Tomogr. Stat. 5(W07), 2–19 (2007)

    MathSciNet  Google Scholar 

  199. Poznyak, A.S.: Advanced mathematical tools for automatic control engineers. Elsevier, Amsterdam [u.a.] (2008)

    Google Scholar 

  200. Poznyak, A.S.: Least squares method for dynamic systems identification. In: Models in statistics and probability theory (Spanish), Aportaciones Mat. Comun., vol. 39, pp. 107–150. Soc. Mat. Mexicana, México (2008)

    Google Scholar 

  201. Poznyak, A.S.: Least squares method for dynamic systems identification. In: Modelos en estadística y probabilidad, pp. 107–150. México: Sociedad Matemática Mexicana; México: Universidad Nacional Autónoma de México (2008)

    Google Scholar 

  202. Poznyak, A.S.: Advanced Mathematical Tools for Automatic Control Engineers (2009). http://www.sciencedirect.com/science/book/9780080446738 (Includes bibliographical references (pp. 529-533) and index)

  203. Poznyak, A.S.: Attractive Ellipsoids in Robust Control (2014). https://doi.org/10.1007/978-3-319-09210-2

  204. Poznyak, A.S.: Non-smooth missiles guidance: interceptor-defender scenario with uncertainties. In: Proceedings of the 13th International Workshop on Variable Structure Systems (VSS), pp. 1–6 (2014). https://doi.org/10.1109/VSS.2014.6881125

  205. Poznyak, A.S.: Robust feedback design for stabilization of nonlinear systems with sampled-data and quantized output: attractive ellipsoid method. Autom. Remote Control 76(5), 834–846 (2015). https://doi.org/10.1134/S0005117915050094 (Translation of Avtomat. i Telemekh. 2015, no. 5, 130-144)

  206. Poznyak, A.S.: Stochastic sliding mode control: what is this? In: Proceedings of the 14th International Workshop on Variable Structure Systems (VSS), pp. 328–333 (2016). https://doi.org/10.1109/VSS.2016.7506939

  207. Poznyak, A.S.: Stochastic super-twist dynamics. In: Proceedings of the 14th International Workshop on Variable Structure Systems (VSS), pp. 334–339 (2016). https://doi.org/10.1109/VSS.2016.7506940

  208. Poznyak, A.S.: Sliding mode control in stochastic continuous-time systems: \(\rm \mu \)-zone ms-convergence. IEEE Trans. Autom. Control 62(2), 863–868 (2017). https://doi.org/10.1109/TAC.2016.2557759

  209. Poznyak, A.S., Azhmyakov, V., Mera, M.: Practical output feedback stabilisation for a class of continuous-time dynamic systems under sample-data outputs. Int. J. Control 84(8), 1408–1416 (2011). https://doi.org/10.1080/00207179.2011.603097

  210. Poznyak, A.S., Bejarano, F.J., Fridman, L.: Numerical method for weights adjustment in minimax multi-model LQ-control. Optim. Control Appl. Methods 28(4), 289–300 (2007). https://doi.org/10.1002/oca.805

  211. Poznyak, A.S., Chairez, I., Poznyak, T.: Sliding mode neurocontrol with applications. In: Proceedings of the International Workshop on Variable Structure Systems VSS’06, pp. 5–10 (2006). https://doi.org/10.1109/VSS.2006.1644484

  212. Poznyak, A.S., Chairez, I., Poznyak, T.: Sliding mode neurocontrol for the class of dynamic uncertain non-linear systems. Int. J. Control 81(1), 74–88 (2008). https://doi.org/10.1080/00207170701278303

  213. Poznyak, A.S., Escobar, J., Shtessel, Y.B.: Sliding modes time varying matrix identification for stochastic system. Int. J. Syst. Sci. 38(11), 847–859 (2007). https://doi.org/10.1080/00207720701620142

  214. Poznyak, A.S., Escobar, J.A., Shtessel, Y.B.: Stochastic sliding modes identification. In: Proceedings of the International Workshop on Variable Structure Systems VSS’06, pp. 226–231 (2006). https://doi.org/10.1109/VSS.2006.1644522

  215. Poznyak, A.S., Fridman, L., Bejarano, F.J.: Mini-max integral sliding-mode control for multimodel linear uncertain systems. IEEE Trans. Autom. Control 49(1), 97–102 (2004). https://doi.org/10.1109/TAC.2003.821412

  216. Poznyak, A.S., Gallegos, C.J.: Multimodel prey-predator LQ differential games. In: Proceedings of the American Control Conference, vol. 6, pp. 5369–5374 (2003). https://doi.org/10.1109/ACC.2003.1242582

  217. Poznyak, A.S., Godoy-Alcantar, M., Gomez-Ramirez, E.: Learning for repeated constrained games in counter-coalition space. In: Proceedings of the 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475), vol. 5, pp. 4410–4415 (2003). https://doi.org/10.1109/CDC.2003.1272207

  218. Poznyak, A.S., Ljung, L.: On-line identification and adaptive trajectory tracking for nonlinear stochastic continuous time systems using differential neural networks. Automatica 37(8), 1257–1268 (2001). https://doi.org/10.1016/S0005-1098(01)00067-X

  219. Poznyak, A.S., Najim, K.: Learning Automata and Stochastic Optimization. No. 225 in Lecture Notes in Control and Information Sciences. Springer, London [u.a.] (1997) Literaturangaben

    Google Scholar 

  220. Poznyak, A.S., Najim, K.: Adaptive control of constrained finite Markov chains. Automatica 35(5), 777–789 (1999). https://doi.org/10.1016/S0005-1098(98)00219-2

  221. Poznyak, A.S., Najim, K.: Adaptive zero-sum stochastic game for two finite Markov chains. In: Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), vol. 1, pp. 717–722 (2000). https://doi.org/10.1109/CDC.2000.912852

  222. Poznyak, A.S., Najim, K.: Bush-mosteller learning for a zero-sum repeated game with random pay-offs. Int. J. Syst. Sci. 32(10), 1251–1260 (2001). https://doi.org/10.1080/00207720110042347

  223. Poznyak, A.S., Najim, K.: Learning through reinforcement for n-person repeated constrained games. IEEE Trans. Syst. Man Cybern. Part B 32(6), 759–771 (2002). https://doi.org/10.1109/TSMCB.2002.1049610

  224. Poznyak, A.S., Najim, K., Chtourou, M.: Analysis of the behaviour of multilevel hierarchical systems of learning automata and their application for multimodal functions optimization. Int. J. Syst. Sci. 27(1), 97–112 (1996). https://doi.org/10.1080/00207729608929192

  225. Poznyak, A.S., Najim, K., Chtourou, M.: Learning automata with continuous inputs and their application for multimodal functions optimization. Int. J. Syst. Sci. 27(1), 87–95 (1996). https://doi.org/10.1080/00207729608929191

  226. Poznyak, A.S., Najim, K., Gmez-Ramrez, E., Najim, K., Poznyak, A.S.: Self-learning Control of Finite Markov Chains. No. 4 in Control engineering. Marcel Dekker, New York [u.a.] (2000)

    Google Scholar 

  227. Poznyak, A.S., Nazin, A., Murano, D.: Suboptimal robust asymptotic observer for stochastic continuous time nonlinear system: numerical procedure and convergence analysis. In: Proceedings of the 41st IEEE Conference on Decision and Control, vol. 3, pp. 2588–2593 (2002). https://doi.org/10.1109/CDC.2002.1184228

  228. Poznyak, A.S., Nazin, A., Murano, D.: Observer matrix gain optimization for stochastic continuous time nonlinear systems. Syst. Control Lett. 52(5), 377–385 (2004). https://doi.org/10.1016/j.sysconle.2004.02.013

  229. Poznyak, A.s., Polyakov, A., Azhmyakov, V.: Attractive ellipsoid method with adaptation. Attractive Ellipsoids in Robust Control (2014). https://doi.org/10.1007/978-3-319-09210-2_12

  230. Poznyak, A.S., Polyakov, A., Azhmyakov, V.: Attractive ellipsoids in sliding mode control. Attractive Ellipsoids in Robust Control (2014). https://doi.org/10.1007/978-3-319-09210-2_8

  231. Poznyak, A.S., Polyakov, A., Azhmyakov, V.: Bounded robust control. Attractive Ellipsoids in Robust Control (2014). https://doi.org/10.1007/978-3-319-09210-2_11

  232. Poznyak, A.S., Polyakov, A., Azhmyakov, V.: Control with sample-data measurements. Attractive Ellipsoids in Robust Control (2014). https://doi.org/10.1007/978-3-319-09210-2_5

  233. Poznyak, A.S., Polyakov, A., Azhmyakov, V.: Introduction. Attractive Ellipsoids in Robust Control (2014). https://doi.org/10.1007/978-3-319-09210-2_1

  234. Poznyak, A.S., Polyakov, A., Azhmyakov, V.: Mathematical background. Attractive Ellipsoids in Robust Control (2014). https://doi.org/10.1007/978-3-319-09210-2_2

  235. Poznyak, A.S., Polyakov, A., Azhmyakov, V.: Robust control of implicit systems. Attractive Ellipsoids in Robust Control (2014). https://doi.org/10.1007/978-3-319-09210-2_7

  236. Poznyak, A.S., Polyakov, A., Azhmyakov, V.: Robust control of switched systems. Attractive Ellipsoids in Robust Control (2014). https://doi.org/10.1007/978-3-319-09210-2_10

  237. Poznyak, A.S., Polyakov, A., Azhmyakov, V.: Robust output feedback control. Attractive Ellipsoids in Robust Control (2014). https://doi.org/10.1007/978-3-319-09210-2_4

  238. Poznyak, A.S., Polyakov, A., Azhmyakov, V.: Robust stabilization of time-delay systems. Attractive Ellipsoids in Robust Control (2014). https://doi.org/10.1007/978-3-319-09210-2_9

  239. Poznyak, A.S., Polyakov, A., Azhmyakov, V.: Robust state feedback control. Attractive Ellipsoids in Robust Control (2014). https://doi.org/10.1007/978-3-319-09210-2_3

  240. Poznyak, A.S., Polyakov, A., Azhmyakov, V.: Sample data and quantifying output control. Attractive Ellipsoids in Robust Control (2014). https://doi.org/10.1007/978-3-319-09210-2_6

  241. Poznyak, A.S., Polyakov, A.E., Strygin, V.V.: An analysis of finite-time convergence by the method of Lyapunov functions in systems with second-order sliding modes. Rossiĭskaya Akademiya Nauk. Prikladnaya Matematika i Mekhanika 75(3), 410–429 (2011). https://doi.org/10.1016/j.jappmathmech.2011.07.006

  242. Poznyak, A.S., Poznyak, T., Chaĭrez, I.: Dynamic neural observers and their application for the identification of an ozone water treatment process. Rossiĭskaya Akademiya Nauk. Avtomatika i Telemekhanika 6, 61–74 (2006). https://doi.org/10.1134/S0005117906060051

  243. Poznyak, A.S., Sánchez, E.N.: Non-linear system on-line identification using dynamic neural networks. Intell. Autom. Soft Comput. 5(3), 201–209 (1999). https://doi.org/10.1080/10798587.1999.10750761

  244. Poznyak, A.S., Shtessel, Y., Fridman, L., Davila, J., Escobar, J.: Identification of parameters in dynamic systems via sliding-mode techniques. Advances in Variable Structure and Sliding Mode Control. Lecture Notes in Control and Information Sciences, pp. 313–347. Springer, Berlin (2006). https://doi.org/10.1007/11612735_15

  245. Poznyak, A.S., Shtessel, Y.B.: Minimax sliding mode control with minimal-time reaching phase. In: Proceedings of the American Control Conference, vol. 1, pp. 174–179 (2003). https://doi.org/10.1109/ACC.2003.1238933

  246. Poznyak, A.S., Shtessel, Y.B., Gallegos, C.J.: Min-max sliding-mode control for multimodel linear time varying systems. IEEE Trans. Autom. Control 48(12), 2141–2150 (2003). https://doi.org/10.1109/TAC.2003.820068

  247. Poznyak, A.S., Yu, W.: Robust identification by dynamic neural networks using sliding mode learning. Appl. Math. Comput. Sci. 8(1), 135–144 (1998)

    MathSciNet  MATH  Google Scholar 

  248. Poznyak, A.S., Yu, W.: Robust asymptotic neuro-observer with time delay term. Int. J. Robust Nonlinear Control 10(7), 535–559 (2000). https://doi.org/10.1002/1099-1239(200006)10:7<535::AID-RNC492>3.0.CO;2-6

  249. Poznyak, A.S., Yu, W., Poznyak, T.I., Najim, K.: Simultaneous states and parameters estimation of an ozonation reactor based on dynamic neural network. Differ. Equ. Dyn. Syst. Int. J. Theory Appl. Comput. Simul. 12(1–2), 195–221 (2004)

    Google Scholar 

  250. Poznyak, A.S., Yu, W., Sánchez, E.N., Pérez, J.P.: Nonlinear adaptive trajectory tracking using dynamic neural networks. IEEE Trans. Neural Netw. 10(6), 1402–1411 (1999). https://doi.org/10.1109/72.809085

  251. Poznyak, A.S., Zuniga, R.S.: Information inequalities and limiting possibilities of adaptive control strategies in ARX models with a general quadratic criterion. J. Math. Syst. Estim. Control 7(1), 107–110 (1997)

    MathSciNet  MATH  Google Scholar 

  252. Salgado, I., Moreno, J., Fridman, L., Poznyak, A.S., Chairez, I.: Design of variable gain super-twisting observer for nonlinear systems with sampled output. In: Proceedings of the 7th International Conference on Electrical Engineering, Computing Science and Automatic Control, pp. 153–157 (2010). https://doi.org/10.1109/ICEEE.2010.5608643

  253. Sánchez, E.M., Clempner, J.B., Poznyak, A.S.: A priori-knowledge/actor-critic reinforcement learning architecture for computing the mean-variance customer portfolio: the case of bank marketing campaigns. Eng. Appl. Artif. Intell. 46, 82–92 (2015). https://doi.org/10.1016/j.engappai.2015.08.011

  254. Sánchez, E.M., Clempner, J.B., Poznyak, A.S.: Solving the mean-variance customer portfolio in markov chains using iterated quadratic/lagrange programming: a credit-card customer limits approach. Expert Syst. Appl. 42(12), 5315–5327 (2015). https://doi.org/10.1016/j.eswa.2015.02.018

  255. Shtessel, Y.B., Moreno, J.A., Plestan, F., Fridman, L.M., Poznyak, A.S.: Super-twisting adaptive sliding mode control: a Lyapunov design. In: Proceedings of the 49th IEEE Conference on Decision and Control (CDC), pp. 5109–5113 (2010). https://doi.org/10.1109/CDC.2010.5717908

  256. Shtessel, Y.B., Poznyak, A.S.: Parameter identification of affine time varying systems using traditional and high order sliding modes. In: Proceedings of the 2005, American Control Conference, vol. 4, pp. 2433–2438 (2005). https://doi.org/10.1109/ACC.2005.1470331

  257. Solis, C.U., Clempner, J.B., Poznyak, A.: Fast terminal sliding mode control with integral filter applied to a van der Pol oscillator. IEEE Trans. Ind. Electron. 99(1) (2017). https://doi.org/10.1109/TIE.2017.2677299

  258. Solis, C.U., Clempner, J.B., Poznyak, A.S.: Designing a terminal optimal control with an integral sliding mode component using a saddle point method approach: a cartesian 3D-crane application. Nonlinear Dyn. 86(2), 911 (2016). https://doi.org/10.1007/s11071-016-2932-9

  259. Solis, C.U., Clempner, J.B., Poznyak, A.S.: Modeling multileader-follower noncooperative Stackelberg games. Cybern. Syst. 47(8), 650–673 (2016). https://doi.org/10.1080/01969722.2016.1232121

  260. Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Computing the lp-strong Nash equilibrium looking for cooperative stability in multiple agents Markov games. In: Proceedings of the 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE) 2015, pp. 1–6 (2015). https://doi.org/10.1109/ICEEE.2015.7357926

  261. Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Computing the Stackelberg/Nash equilibria using the extraproximal method: convergence analysis and implementation details for Markov chains games. Int.l. J Appl. Math. Comput. Sci. 25(2), 337–351 (2015)

    MathSciNet  MATH  Google Scholar 

  262. Trejo, K.K., Clempner, J.B., Poznyak, A.S.: A Stackelberg security game with random strategies based on the extraproximal theoretic approach. Eng. Appl. Artif. Intell. 37, 145–153 (2015). https://doi.org/10.1016/j.engappai.2014.09.002

  263. Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Adapting strategies to dynamic environments in controllable Stackelberg security games. In: Proceedings of the 55th IEEE Conference on Decision and Control, CDC 2016, Las Vegas, NV, USA, 12–14 Dec 2016, pp. 5484–5489. IEEE (2016). https://doi.org/10.1109/CDC.2016.7799111

  264. Trejo, K.K., Clempner, J.B., Poznyak, A.S.: An optimal strong equilibrium solution for cooperative multi-leader-follower Stackelberg Markov chains games. Kybernetika 52(2), 258–279 (2016). https://doi.org/10.14736/kyb-2016-2-0258

  265. Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Computing the strong \(L_p\)-Nash equilibrium for Markov chains games: convergence and uniqueness. Appl. Math. Model. Simul. Comput. Eng. Environ. Syst. 41, 399–418 (2017). https://doi.org/10.1016/j.apm.2016.09.001

  266. Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Nash bargaining equilibria for controllable Markov chains games. In: 20th IFAC World Congress. Toulouse, France (2017) (To be published)

    Google Scholar 

  267. Utkin, V.I., Poznyak, A.S.: Adaptive sliding mode control. Advances in Sliding Mode Control (2013). https://doi.org/10.1007/978-3-642-36986-5_2

  268. Utkin, V.I., Poznyak, A.S.: Adaptive sliding mode control. Advances in sliding mode control. Lecture Notes in Control and Information Sciences, pp. 21–53. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36986-5_2

  269. Utkin, V.I., Poznyak, A.S.: Adaptive sliding mode control with application to super-twist algorithm: equivalent control method. Automatica 49(1), 39–47 (2013). https://doi.org/10.1016/j.automatica.2012.09.008

  270. Utkin, V.I., Poznyak, A.S., Ordaz, P.: Adaptive super-twist control with minimal chattering effect. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, pp. 7009–7014 (2011). https://doi.org/10.1109/CDC.2011.6160720

  271. Villafuerte, R., Mondie, S., Poznyak, A.S.: Practical stability of neutral type time delay systems: LMI’s approach. In: Proceedings of the 5th International Conference on Electrical Engineering, Computing Science and Automatic Control 2008, pp. 75–79 (2008). https://doi.org/10.1109/ICEEE.2008.4723435

  272. Villafuerte, R., Mondie, S., Poznyak, A.S.: Practical stability of time delay systems: LMI’s approach.. In: Proceedings of the 47th IEEE Conference on Decision and Control, pp. 4807–4812 (2008). https://doi.org/10.1109/CDC.2008.4738801

  273. Yu, W., Poznyak, A.S., Li, X.: Multilayer dynamic neural networks for nonlinear system on-line identification. Int. J. Control 74(18), 1858–1864 (2001). https://doi.org/10.1080/00207170110089816

  274. Yu, W., Poznyak, A.S., Sanchez, E.N.: Neural adaptive control of two-link manipulator with sliding mode compensation. In: Proceedings of the IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), vol. 4, pp. 3122–3127 (1999). https://doi.org/10.1109/ROBOT.1999.774073

  275. Zhermolenko, V.N., Poznyak, A.S.: Criteria of robust stability for time-varying 2D Wang–Mitchel differential systems: integral funnel method. Int. J. Control 89(11), 2297–2310 (2016). https://doi.org/10.1080/00207179.2016.1155752

  276. Zhermolenko, V.N., Poznyak, A.S.: Necessary and sufficient conditions for stabilizability of planar parametrically perturbed control systems. IMA J. Math. Control Inf. 33(1), 53–68 (2016). https://doi.org/10.1093/imamci/dnu028

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander S. Poznyak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Poznyak, A.S. (2018). Dr. Alexander Semionovich Poznyak Gorbatch: Biography. In: Clempner, J., Yu, W. (eds) New Perspectives and Applications of Modern Control Theory. Springer, Cham. https://doi.org/10.1007/978-3-319-62464-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62464-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62463-1

  • Online ISBN: 978-3-319-62464-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics