Skip to main content

PD1 Checkpoint Blockade in Melanoma: From Monotherapy to Combination Therapies

  • Chapter
  • First Online:
Oncoimmunology

Abstract

Malignant melanoma is a highly aggressive tumor due to its early metastatic spread. For decades, the median survival for patients with advanced metastatic disease treated with standard chemotherapy was only 6–12 months. During this time, substantial evidences have been accumulated demonstrating that cytotoxic CD8+ T lymphocytes have the capability to specifically recognize and kill autologous melanoma cells. However, attempts to therapeutically exploit this knowledge have long been of limited success, due to the fact that the complex regulation of T cell activity in the tumor microenvironment was poorly understood. T cells infiltrating melanoma metastases become activated upon T cell receptor-dependent recognition of cognate antigens on melanoma cells. But at the same time, T cells receive inhibitory signals via their co-receptor PD1 that engages its ligand PD-L1 on melanoma cells. Thus, by acquisition of PD-L1 surface expression, melanoma cells dampen the T cell’s activity. The clinical implementation of antibodies targeting the immune-regulatory PD1/PD-L1 axis, thereby releasing T cells from the PD1 checkpoint, was a breakthrough in melanoma immunotherapy. Around 30–40% of melanoma patients respond to anti-PD1 monotherapy. Response rates could even be enhanced to 50% by the combination of antibodies targeting PD1 and CTLA4 another inhibitory checkpoint of T cell activation. However, combination therapy is less well tolerated causing severe side effects. Thus, PD1 is currently tested in combination with other agents that might have an improved safety profile and induce clinical responses also in those patients that at present do not respond to anti-PD1 monotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Schadendorf D, et al. Melanoma. Nat Rev Dis Primers. 2015;1:15003.

    Article  PubMed  Google Scholar 

  2. Griewank KG, Scolyer RA, Thompson JF, Flaherty KT, Schadendorf D, Murali R. Genetic alterations and personalized medicine in melanoma: progress and future prospects. J Natl Cancer Inst. 2014;106:djt435.

    Article  PubMed  Google Scholar 

  3. Lawrence MS, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alexandrov LB, et al. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Larkin J, et al. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med. 2014;371:1867–76.

    Article  PubMed  Google Scholar 

  6. Long GV, et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet. 2015;386:444–51.

    Article  CAS  PubMed  Google Scholar 

  7. Robert C, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med. 2015;372:30–9.

    Article  PubMed  Google Scholar 

  8. Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014;14:135–46.

    Article  CAS  PubMed  Google Scholar 

  9. Sanderson NS, et al. Cytotoxic immunological synapses do not restrict the action of interferon-gamma to antigenic target cells. Proc Natl Acad Sci U S A. 2012;109:7835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science. 2015;348:69–74.

    Article  CAS  PubMed  Google Scholar 

  11. Van Allen EM, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350:207–11.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lennerz V, et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci U S A. 2005;102:16013–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gros A, et al. Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med. 2016;22:433–8.

    Article  CAS  PubMed  Google Scholar 

  14. Gros A, et al. PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014;124:2246–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spranger S, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med. 2013;5:200ra116.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fourcade J, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010;207:2175–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999;11:141–51.

    Article  CAS  PubMed  Google Scholar 

  18. Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013;31:563–604.

    Article  CAS  PubMed  Google Scholar 

  19. Krummel MF, Allison JP. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 1995;182:459–65.

    Article  CAS  PubMed  Google Scholar 

  20. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995;3:541–7.

    Article  CAS  PubMed  Google Scholar 

  21. Hodi FS, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Robert C, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.

    Article  CAS  PubMed  Google Scholar 

  23. Robert C, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.

    Article  CAS  PubMed  Google Scholar 

  24. Weber JS, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16:375–84.

    Article  CAS  PubMed  Google Scholar 

  25. Hamid O, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369:134–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Robert C, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384:1109–17.

    Article  CAS  PubMed  Google Scholar 

  27. Ribas A, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16:908–18.

    Article  CAS  PubMed  Google Scholar 

  28. Robert C, et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med. 2015;372:2521–32.

    Article  CAS  PubMed  Google Scholar 

  29. Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Topalian SL, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tumeh PC, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hugo W, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165:35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Teng MW, Ngiow SF, Ribas A, Smyth MJ. Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res. 2015;75:2139–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O’Donnell JS, Long GV, Scolyer RA, Teng MW, Smyth MJ. Resistance to PD1/PDL1 checkpoint inhibition. Cancer Treat Rev. 2017;52:71–81.

    Article  PubMed  Google Scholar 

  35. Pitt JM, et al. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity. 2016;44:1255–69.

    Article  CAS  PubMed  Google Scholar 

  36. Zaretsky JM, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375:819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao F, et al. Melanoma lesions independently acquire T-cell resistance during metastatic latency. Cancer Res. 2016;76:4347–58.

    Article  CAS  PubMed  Google Scholar 

  38. Sucker A, et al. Genetic evolution of T-cell resistance in the course of melanoma progression. Clin Cancer Res. 2014;20:6593–604.

    Article  CAS  PubMed  Google Scholar 

  39. Shin DS, et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7:188–201.

    Article  CAS  PubMed  Google Scholar 

  40. Topalian SL, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32:1020–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cooper ZA, Reuben A, Amaria RN, Wargo JA. Evidence of synergy with combined BRAF-targeted therapy and immune checkpoint blockade for metastatic melanoma. Oncoimmunology. 2014;3:e954956.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wilmott JS, et al. Selective BRAF inhibitors induce marked T-cell infiltration into human metastatic melanoma. Clin Cancer Res. 2012;18:1386–94.

    Article  CAS  PubMed  Google Scholar 

  43. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44:989–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Benci JL, et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell. 2016;167:1540–1554 e1512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kohlhapp FJ, Kaufman HL. Molecular pathways: mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res. 2016;22:1048–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Schadendorf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paschen, A., Schadendorf, D. (2018). PD1 Checkpoint Blockade in Melanoma: From Monotherapy to Combination Therapies. In: Zitvogel, L., Kroemer, G. (eds) Oncoimmunology. Springer, Cham. https://doi.org/10.1007/978-3-319-62431-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62431-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62430-3

  • Online ISBN: 978-3-319-62431-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics