Skip to main content

Preconditioned Iterative Methods for Eigenvalue Counts

  • Conference paper
  • First Online:
Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing (EPASA 2015)

Abstract

We describe preconditioned iterative methods for estimating the number of eigenvalues of a Hermitian matrix within a given interval. Such estimation is useful in a number of applications. It can also be used to develop an efficient spectrum-slicing strategy to compute many eigenpairs of a Hermitian matrix. Our method is based on the Lanczos- and Arnoldi-type of iterations. We show that with a properly defined preconditioner, only a few iterations may be needed to obtain a good estimate of the number of eigenvalues within a prescribed interval. We also demonstrate that the number of iterations required by the proposed preconditioned schemes is independent of the size and condition number of the matrix. The efficiency of the methods is illustrated on several problems arising from density functional theory based electronic structure calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The variance of a Gaussian trace estimator applied to a Hermitian matrix also depends on the magnitude of the diagonal elements and can be expressed only in terms of the eigenvalues of A.

  2. 2.

    Available in the PARSEC group of the University of Florida Sparse Matrix Collection at https://www.cise.ufl.edu/research/sparse/matrices/.

References

  1. Aktulga, H.M., Lin, L., Haine, C., Ng, E.G., Yang, C.: Parallel eigenvalue calculation based on multiple shift-invert Lanczos and contour integral based spectral projection method. Parallel Comput. 40(7), 195–212 (2014)

    Article  MathSciNet  Google Scholar 

  2. Avron, H., Toledo, S.: Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix. J. ACM 58(2), 8:1–8:34 (2011). doi:10.1145/1944345.1944349

  3. Calvetti, D., Golub, G., Reichel, L.: A computable error bound for matrix functionals. J. Comput. Appl. Math. 103(2), 301–306 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Calvetti, D., Kim, S.M., Reichel, L.: Quadrature rules based on the Arnoldi process. SIAM J. Matrix Anal. Appl. 26(3), 765–781 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gill, P.E., Murray, W., Ponceleón, D.B., Saunders, M.A.: Preconditioners for indefinite systems arising in optimization. SIAM J. Matrix Anal. Appl. 13(1), 292–311 (1992). doi:10.1137/0613022

    Article  MathSciNet  MATH  Google Scholar 

  6. Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  7. Greif, C., He, S., Liu, P.: SYM-ILDL: incomplete ldlt factorization of symmetric indefinite and skew-symmetric matrices. CoRR abs/1505.07589 (2015). http://arxiv.org/abs/1505.07589

  8. Higham, N.J.: Functions of Matrices: Theory and Computation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2008)

    Google Scholar 

  9. Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential operator. SIAM J. Sci. Comput. 34(5), 1911–1925 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Hutchinson, M.F.: A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines. Commun. Stat. Simul. Comput. 18, 1059–1076 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, R., Xi, Y., Vecharynski, E., Yang, C., Saad, Y.: A thick-restart Lanczos algorithm with polynomial filtering for hermitian eigenvalue problems. Tech. rep. (2015). Http://arxiv.org/abs/1512.08135

  12. Lin, L., Saad, Y., Yang, C.: Approximating spectral densities of large matrices. SIAM Rev. 58, 34–654 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Maeda, Y., Futamura, Y., Imakura, A., Sakurai, T.: Filter analysis for the stochastic estimation of eigenvalue counts. JSIAM Lett. 7, 53–56 (2015)

    Article  MathSciNet  Google Scholar 

  14. Napoli, E.D., Polizzi, E., Saad, Y.: Efficient estimation of eigenvalue counts in an interval. Tech. rep. (2015). Http://arxiv.org/abs/1308.4275

    Google Scholar 

  15. Parlett, B.N.: The Symmetric Eigenvalue Problem. Classics in Applied Mathematics, vol. 20. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1998). Corrected reprint of the 1980 original

    Google Scholar 

  16. Powell, M.J.D.: Approximation Theory and Methods. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  17. Reichel, L., Spalević, M.M., Tang, T.: Generalized averaged Gauss quadrature rules for the approximation of matrix functionals. BIT Numer. Math. 56, 1045–1067 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29(1), 209–228 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Teter, M.P., Payne, M.C., Allan, D.C.: Solution of Schrödinger’s equation for large systems. Phys. Rev. B 40(18), 12255–12263 (1989)

    Article  Google Scholar 

  20. Vecharynski, E., Knyazev, A.V.: Absolute value preconditioning for symmetric indefinite linear systems. SIAM J. Sci. Comput. 35(2), A696–A718 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, C., Meza, J., Lee, B., Wang, L.W.: KSSOLV—a MATLAB toolbox for solving the Kohn-Sham equations. ACM Trans. Math. Softw. 36(2), 10:1–10:35 (2009)

    Google Scholar 

  22. Zhang, Y., Wainwright, M.J., Jordan, M.I.: Distributed estimation of generalized matrix rank: efficient algorithms and lower bounds. Tech. rep. (2015). Http://arxiv.org/abs/1502.01403

    Google Scholar 

Download references

Acknowledgements

Support for this work was provided through Scientific Discovery through Advanced Computing (SciDAC) program funded by U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene Vecharynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vecharynski, E., Yang, C. (2017). Preconditioned Iterative Methods for Eigenvalue Counts. In: Sakurai, T., Zhang, SL., Imamura, T., Yamamoto, Y., Kuramashi, Y., Hoshi, T. (eds) Eigenvalue Problems: Algorithms, Software and Applications in Petascale Computing. EPASA 2015. Lecture Notes in Computational Science and Engineering, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-62426-6_8

Download citation

Publish with us

Policies and ethics