Skip to main content

Type-2 Fuzzy Classifier Based Pathological Disorder Recognition

  • Chapter
  • First Online:
Gesture Recognition

Part of the book series: Studies in Computational Intelligence ((SCI,volume 724))

  • 999 Accesses

Abstract

Gestures of a person symbolizing analogous pathological disorder are not always exclusive. Naturally, the gestural features of a subject suffering from the same pathological disorder vary widely over different instances. In presence of two or more gestural features, the variation of the attributes together makes the problem of pathological disorder recognition more convoluted. Wider variance in gestural features is the main source of uncertainty in the pathological disorder recognition, which has been addressed here using type-2 fuzzy sets (T2FSs). First, a type-2 fuzzy gesture space is created with the background knowledge of gestural features of different subjects for different pathological disorders. Second, the pathological disorder of an unknown gestural expression is recognized based on the consensus of the measured gestural features of the fuzzy gesture space. A fusion of interval and general type-2 Fuzzy Sets has been used to construct the fuzzy gestural space. An interval valued fuzzy set (IVFS) or interval type-2 fuzzy set (IT2FS) is constructed with primary membership functions for M gestural features obtained from N subjects, each having L instances of gestural expressions for a given pathological disorder. The corresponding general type-2 fuzzy set (GT2FS) includes the secondary memberships for individual primary upper and lower membership curves in the respective IVFS. The secondary membership of a given source, characterizing the reliability in its primary membership assignment, is determined based on the amalgamated knowledge of all the subjects’ primary membership functions. The representatives of each pathological disorder class are then evaluated by utilizing the attractive features of both IVFS and GT2FS. The pathological disorder of an unknown gestural expression is finally determined by identifying its minimal discrepancy with the existing class representatives. The adopted T2FS-based uncertainty management strategy, when applied to gender independent training and testing datasets, results in a classification accuracy of 93.41%.

Contributed by Pratyusha Rakshit, Sriparna Saha and Amit Konar

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Quante, S. Hille, M.D. Schofer, J. Lorenz, M. Hauck, Noxious counterirritation in patients with advanced osteoarthritis of the knee reduces MCC but not SII pain generators: a combined use of MEG and EEG. J. Pain Res. 1, 1 (2008)

    Google Scholar 

  2. M. Nixon, A.S. Aguado, Feature Extraction & Image Processing (Academic Press, London, 2008)

    Google Scholar 

  3. A. Konar, A. Chakraborty, Emotion Recognition: A Pattern Analysis Approach (Wiley, London, 2014

    Google Scholar 

  4. M. Parajuli, D. Tran, W. Ma, D. Sharma, Senior health monitoring using Kinect. in Commun Electron (ICCE) 2012 Fourth International Conference on IEEE, 2012, pp. 309–312

    Google Scholar 

  5. T.-L. Le, M.-Q. Nguyen, T.-T.-M. Nguyen, Human posture recognition using human skeleton provided by Kinect, in: Comput. Manag. Telecommun. (ComManTel), 2013 International Conference on IEEE, 2013, pp. 340–345

    Google Scholar 

  6. R.A. Clark, Y.-H. Pua, K. Fortin, C. Ritchie, K.E. Webster, L. Denehy et al., Validity of the Microsoft Kinect for assessment of postural control. Gait Posture. 36, 372–377 (2012)

    Article  Google Scholar 

  7. M. Oszust, M. Wysocki, Recognition of signed expressions observed by Kinect Sensor, in: Adv. Video Signal Based Surveill. (AVSS), 2013 10th IEEE International Conference on IEEE, 2013, pp. 220–225

    Google Scholar 

  8. X. Yu, L. Wu, Q. Liu, H. Zhou, Children tantrum behaviour analysis based on Kinect sensor, in: Intell. Vis. Surveill. (IVS), 2011 Third Chinese Conference on IEEE, 2011, pp. 49–52

    Google Scholar 

  9. C.C. Martin, D.C. Burkert, K.R. Choi, N.B. Wieczorek, P.M. McGregor, R.A. Herrmann, et al., A real-time ergonomic monitoring system using the Microsoft Kinect, in: Syst. Inf. Des. Symp. (SIEDS), 2012 IEEE, IEEE, 2012, pp. 50–55

    Google Scholar 

  10. N. Burba, M. Bolas, D.M. Krum, E.A. Suma, Unobtrusive measurement of subtle nonverbal behaviors with the Microsoft Kinect, in: Virtual Real. Work. (VR), 2012 IEEE, IEEE, 2012, pp. 1–4

    Google Scholar 

  11. K. Lai, J. Konrad, P. Ishwar, A gesture-driven computer interface using Kinect, in: Image Anal. Interpret. (SSIAI), 2012 IEEE Southwest Symposium on IEEE, 2012, pp. 185–188

    Google Scholar 

  12. B. Galna, G. Barry, D. Jackson, D. Mhiripiri, P. Olivier, L. Rochester, Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson’s disease. Gait Posture, 1062–1068 (2014)

    Google Scholar 

  13. C. Metcalf, R. Robinson, A. Malpass, T. Bogle, T. Dell, C. Harris, et al., Markerless motion capture and measurement of hand kinematics: validation and application to home-based upper limb rehabilitation (2013)

    Google Scholar 

  14. E.E. Stone, M. Skubic, Fall detection in homes of older adults using the Microsoft Kinect. Biomed. Heal. Informatics, IEEE journal of biomedical and health informatics, 19(1), 290–301 (2015). doi:10.1109/JBHI.2014.2312180

  15. D. Zhai, J.M. Mendel, Uncertainty measures for general type-2 fuzzy sets. Inf. Sci. (Ny) 181, 503–518 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.M. Mendel, R.I. John, F. Liu, Interval type-2 fuzzy logic systems made simple. Fuzzy Syst. IEEE Trans. 14, 808–821 (2006)

    Article  Google Scholar 

  17. L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  Google Scholar 

  18. L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. (NY) 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Halder, A. Konar, R. Mandal, A. Chakraborty, P. Bhowmik, N.R. Pal, et al., General and interval type-2 fuzzy face-space approach to emotion recognition. IEEE Trans. Syst. Man Cybern. Syst. 43(3), 587–605 (2013)

    Google Scholar 

  20. J.M. Mendel, R.I.B. John, Type-2 fuzzy sets made simple. Fuzzy Syst. IEEE Trans. 10, 117–127 (2002)

    Article  Google Scholar 

  21. C. Wagner, H. Hagras, Toward general type-2 fuzzy logic systems based on zSlices. Fuzzy Syst. IEEE Trans. 18, 637–660 (2010)

    Article  Google Scholar 

  22. M. Biglarbegian, J.M. Mendel, On the justification to use a novel simplified interval type-2 fuzzy logic system, J. Intell. Fuzzy Syst. (n.d.)

    Google Scholar 

  23. M. Hao, J.M. Mendel, Similarity measures for general type-2 fuzzy sets based on the α-plane representation. Inf. Sci. (Ny) 277, 197–215 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. J.M. Mendel, General type-2 fuzzy logic systems made simple: a tutorial. Fuzzy Syst. IEEE Trans. 22, 1162–1182 (2014)

    Article  Google Scholar 

  25. M.R. Rajati, J.M. Mendel, On Computing normalized interval type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. (2013)

    Google Scholar 

  26. J.M. Mendel, D. Wu, Determining interval type-2 fuzzy set models for words using data collected from one subject: Person FOUs, in: Fuzzy Syst. (FUZZ-IEEE), 2014 IEEE International Conference on IEEE, 2014, pp. 768–775

    Google Scholar 

  27. D. Wu, J.M. Mendel, Designing practical interval type-2 fuzzy logic systems made simple, in: Fuzzy Syst. (FUZZ-IEEE), 2014 IEEE International Conference on IEEE, 2014, pp. 800–807

    Google Scholar 

  28. D.-J. Kim, S.-W. Lee, Z. Bien, Facial emotional expression recognition with soft computing techniques, in: Fuzzy Syst. 2005. FUZZ’05. 14th IEEE International Conference on IEEE, 2005, pp. 737–742

    Google Scholar 

  29. J. Mendel, H. Hagras, W.-W. Tan, W.W. Melek, H. Ying, Introduction to Type-2 Fuzzy Logic Control: Theory and Applications (Wiley, London, 2014)

    Google Scholar 

  30. Mendel, J., Wu, D. Perceptual computing: aiding people in making subjective judgments (vol 13, Wiley, London, 2010)

    Google Scholar 

  31. J.M. Mendel, Uncertain rule-based fuzzy logic system: introduction and new directions, (Prentice Hall PTR, Upper Saddle River, 2001)

    Google Scholar 

  32. H. Bustince, E.Barrenechea, M. Pagola, J. Fernandez, Z. Xu, B. Bedregal, J. Montero, H. Hagras, F. Herrera, B. De Baets. A historical account of types of fuzzy sets and their relationships. IEEE Trans. Fuzzy Syst. (2015)

    Google Scholar 

  33. J.M. Mendel, On type 2 fuzzy sets as granular models for words. Handb. Granul. Comput. 553–574 (2008)

    Google Scholar 

  34. D. Wu, J.M. Mendel, S. Coupland, Enhanced interval approach for encoding words into interval type-2 fuzzy sets and its convergence analysis. Fuzzy Syst. IEEE Trans. 20, 499–513 (2012)

    Article  Google Scholar 

  35. S. Coupland, J.M. Mendel, D. Wu, Enhanced interval approach for encoding words into interval type-2 fuzzy sets and convergence of the word fous, in: Fuzzy Syst. (FUZZ), 2010 IEEE International Conference on IEEE, 2010, pp. 1–8

    Google Scholar 

  36. R.E. Walpole, R.H. Myers, S.L. Myers, K. Ye, Probability and statistics for engineers and scientists (Macmillan New York, 1993)

    Google Scholar 

  37. P. Rakshit, A. Chakraborty, A. Konar, A.K. Nagar, Secondary membership evaluation in Generalized Type-2 Fuzzy Sets by evolutionary optimization algorithm, in: Fuzzy Syst. (FUZZ), 2013 IEEE International Conference on IEEE, 2013, pp. 1–8

    Google Scholar 

  38. Z. Zhang, Microsoft kinect sensor and its effect. Multimedia, IEEE. 19, 4–10 (2012)

    Article  Google Scholar 

  39. J. Tong, J. Zhou, L. Liu, Z. Pan, H. Yan, Scanning 3d full human bodies using kinects. Vis. Comput. Graph. IEEE Trans. 18, 643–650 (2012)

    Article  Google Scholar 

  40. S. Saha, M. Pal, A. Konar, R. Janarthanan, Neural Network Based Gesture Recognition for Elderly Health Care Using Kinect Sensor, in: Swarm, Evolutionary, and Memetic Computing, (Springer, Berlin, 2013), pp. 376–386

    Google Scholar 

  41. E. Stone, M. Skubic, Fall detection in homes of older adults using the Microsoft Kinect. IEEE journal of biomedical and health informatics (2014)

    Google Scholar 

  42. C.L. Lisetti, D.E. Rumelhart, Facial Expression Recognition Using a Neural Network., in: FLAIRS Conference, 1998, pp. 328–332

    Google Scholar 

  43. T.G. Dietterich, Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10, 1895–1923 (1998)

    Article  Google Scholar 

  44. P.J. Bickel, Doksum, K. A, Mathematical statistics: basic ideas and selected topics. vol. 2, CRC Press, (2015)

    Google Scholar 

  45. S. García, D. Molina, M. Lozano, F. Herrera, A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 special session on real parameter optimization. J. Heuristics 15, 617–644 (2009)

    Article  MATH  Google Scholar 

  46. J.H. Zar, Biostatistical analysis, Pearson Education India, (1999)

    Google Scholar 

  47. P. Rakshit, A. Konar, S. Das, L.C. Jain, A.K. Nagar, uncertainty management in differential evolution induced multiobjective optimization in presence of measurement noise. Syst. Man, Cybern. Syst. IEEE Trans. 1, 922–937 (2013). doi:10.1109/TSMC.2013.2282118

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Konar .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Konar, A., Saha, S. (2018). Type-2 Fuzzy Classifier Based Pathological Disorder Recognition. In: Gesture Recognition. Studies in Computational Intelligence, vol 724. Springer, Cham. https://doi.org/10.1007/978-3-319-62212-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-62212-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-62210-1

  • Online ISBN: 978-3-319-62212-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics