Skip to main content

Macroalgal Functional Genomics: A Missing Area

  • Chapter
  • First Online:
Systems Biology of Marine Ecosystems

Abstract

Functional genomics may be defined as the study of deciphering the function and regulation of genes for various traits. Functional genomics has made significant advances in decoding functionality of gene(s) and their regulations furthering our knowledge of systems biology of an organism. The true benefits of such studies have widely been realized in terrestrial plants by understanding their bio-architecture, physiology, regulation and metabolic activations. The functional genomics studies for marine macroalgae (seaweeds) are underdetermined despite their proven economic value. Seaweeds are generally found growing in the intertidal region and experience diverse chronic stresses, including the desiccation, intense irradiance, ultraviolet radiation, salinity and submergence/exposure arising from periodic regular tidal rhythms. The molecular basis of genetic regulations involved in physiological adaptation of seaweeds is limited. The whole genome sequences available for Ectocarpus siliculosus and Chondrus crispus remained largely functionally unannotated. On the other hand, the seaweed improvement programmes also retarded due to limitation of mapping of functional traits over genetic loci. So far, only a few verities were developed using time-consuming conventional breeding approach. The advancement in functional genomics in seaweeds can significantly contribute to these gap areas. Moreover, the functional genomics will facilitate decoding of the mechanisms regulating biosynthesis of species-specific valuable products. This will support the genetic manipulation research for improvements of desired traits in seaweeds. This review, therefore, highlights the potentials of functional genomics in understanding and resolving the unexplored facts about seaweed physiology and trait characterization for developing strategies towards crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baghel RS, Trivedi N, Gupta V, Neori A, Reddy CRK, Lali A, Jha B (2015) Biorefining of marine macroalgal biomass for production of biofuel and commodity chemicals. Green Chem 17:2443–2443

    Article  Google Scholar 

  • Barrento S, Camus C, Sousa-Pinto I, Buschmann A (2016) Germplasm banking of the giant kelp: Our biological insurance in a changing environment. Algal Res 13:134–140

    Google Scholar 

  • Cock JM, Sterck L, Rouze P, Scornet D, Allen AE, Amoutzias G et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  CAS  PubMed  Google Scholar 

  • Coelho SM, Simon N, Ahmed S, Cock JM, Partensky F (2013) Ecological and evolutionary genomics of marine photosynthetic organisms. Mol Ecol 22:867–907

    Article  CAS  PubMed  Google Scholar 

  • Collén J, Guisle-Marsollier I, Léger JJ, Boyen C (2007) Response of the transcriptome of the intertidal red seaweed Chondrus crispus to controlled and natural stresses. New Phytol 176:45–55

    Google Scholar 

  • Collen J, Porcel B, Carre W, Ball SG, Chaparro C, Tonon T et al (2013a) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247–5252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collen J, Porcel B, Carre W, Ball SG, Chaparro C, Tonon T et al (2013b) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247–5252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dittami SM, Gravot A, Goulitquer S, Rousvoal S, Peters AF, Bouchereau A et al (2012) Towards deciphering dynamic changes and evolutionary mechanisms involved in the adaptation to low salinities in Ectocarpus (brown algae). Plant J 71:366–377

    CAS  PubMed  Google Scholar 

  • Dittami SM, Gravot A, Renault D, Goulitquer S, Eggert A, Bouchereau A et al (2011) Integrative analysis of metabolite and transcript abundance during the shortterm response to saline and oxidative stress in the brown alga Ectocarpus siliculosus. Plant Cell Environ 34:629–642

    Article  CAS  PubMed  Google Scholar 

  • Dittami SM, Scornet D, Petit JL, Segurens B, Da Silva C, Corre E et al (2009) Global expression analysis of the brown alga Ectocarpus siliculosus (Phaeophyceae) reveals largescale reprogramming of the transcriptome in response to abiotic stress. Genome Biol 10

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2014) Fisheries and Aquaculture Information and Statistics Services. [WWW document] URL http://www.fao.org/figis/

  • Gravot A, Dittami SM, Rousvoal S, Lugan R, Eggert A, Collen J et al (2010) Diurnal oscillations of metabolite abundances and gene analysis provide new insights into central metabolic processes of the brown alga Ectocarpus siliculosus. New Phytol 188:98–110

    Article  CAS  PubMed  Google Scholar 

  • Gupta V, Thakur RS, Baghel RS, Reddy CRK, Jha B (2014) Seaweed metabolomics: a new facet of functional genomics. In: Jacquot JP, Gadal P (Serial eds) and Bourgougnon N (Serial vol edn), Advances in botanical research vol 71. Sea plants, pp 31–52

    Google Scholar 

  • Gupta V, Thakur RS, Reddy CRK, Jha B (2013) Central metabolic processes of marine macrophytic algae revealed from NMR based metabolome analysis. RSC Adv 3:7037–7047

    Article  CAS  Google Scholar 

  • Hafting JT, Craigie JS, Stengel DB, Loureiro RR, Buschmann AH, Yarish C et al (2015) Prospects and challenges for industrial production of seaweed bioactives. J Phycol 51:821–837

    Article  CAS  PubMed  Google Scholar 

  • Heinrich S, Valentin K, Frickenhaus S, John U, Wiencke C (2012) Transcriptomic analysis of acclimation to temperature and light stress in Saccharina latissima (Phaeophyceae). PLoS One 7:e44342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu ZM, Duan DL, Lopez-Bautista J (2016) Seaweed phylogeography from 1994 to 2014: an overview. In: Hu ZM, Fraser CI (eds) Seaweed phylogeography: adaptation and evolution of seaweeds under environmental change. Springer, Heidelberg, pp 3–22

    Chapter  Google Scholar 

  • Im S, Choi S, Hwang MS, Park EJ, Jeong WJ, Choi DW (2015) De novo assembly of transcriptome from the gametophyte of the marine red algae Pyropia seriata and identification of abiotic stress response genes. J Appl Phycol 27:1343–1353

    Article  CAS  Google Scholar 

  • Kishimoto M, Shimajiri Y, Oshima A, Hase A, Mikami K, Akama K (2013) Functional expression of an animal type-Na+-ATPase gene from a marine red seaweed Porphyra yezoensis increases salinity tolerance in rice plants. Plant Biotechnol 30:417–422

    Article  CAS  Google Scholar 

  • Konotchick T, Dupont CL, Valas RE, Badger JH, Allen AE (2013) Transcriptomic analysis of metabolic function in the giant kelp, Macrocystis pyrifera, across depth and season. New Phytol 198:398–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Jain M (2015) The CRISPR-Cas system for plant genome editing: advances and opportunities. J Exp Bot 66:47–57

    Google Scholar 

  • Kumar M, Kuzhiumparambil U, Pernice M, Jiang Z, Ralph PJ (2016) Metabolomics: an emerging frontier of systems biology in marine macrophytes. Algal Res 16:76–92

    Article  Google Scholar 

  • Kumar M, Gupta V, Trivedi N, Kumari P, Bijo AJ, Reddy CRK, Jha B (2011) Desiccation induced oxidative stress and its biochemical responses in intertidal red alga Gracilaria corticata (Gracilariales, Rhodophyta). Environ Exp Bot 72:194–201

    Article  CAS  Google Scholar 

  • Liu FL, Sun XT, Wang WJ, Liang ZR, Wang FJ (2014) De novo transcriptome analysis-gained insights into physiological and metabolic characteristics of Sargassum thunbergii (Fucales, Phaeophyceae). J Appl Phycol 26:1519–1526

    Article  CAS  Google Scholar 

  • Loureiro R, Gachon CM, Rebours C (2015) Seaweed cultivation: potential and challenges of crop domestication at an unprecedented pace. New Phytol 206:489–492

    Article  PubMed  Google Scholar 

  • Mcleod E, Chumra GL, Bouillon S, Salm R, Björk M, Duarte CM et al (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560

    Article  Google Scholar 

  • Mikami K (2013) Current advances in seaweed transformation. In: Baptista GR (ed) An integrated view of the molecular recognition and toxinology—from analytical procedures to biomedical applications. InTech Open Access Publisher, Rijeka, pp 323–347

    Google Scholar 

  • Mikami K (2014) A technical breakthrough close at hand: feasible approaches toward establishing a gene-targeting genetic transformation system in seaweeds. Front Plant Sci 5:498

    PubMed  PubMed Central  Google Scholar 

  • Nellemann C, Corcoran E, Duarte CM, Valdés L. De Young C, Fonseca L, Grimsditch G (2009) Blue Carbon. A Rapid Response Assessment. United Nations Environment Programme, GRID-Arendal, www.grida.no

    Google Scholar 

  • Oertel W, Wichard T, Weissgerber A (2015) Transformation of Ulva mutabilis (Chlorophyta) by vector plasmids integrating into the genome. J Phycol 51:963–979

    Article  CAS  PubMed  Google Scholar 

  • Oliveira LS, Tschoeke DA, Oliveira AS, Hill LJ, Paradas WC, Salgado LT et al (2015) New insights on the terpenome of the red seaweed Laurencia dendroidea (Florideophyceae, Rhodophyta). Mar Drugs 13:879–902

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearson GA, Hoarau G, Lago-Leston A, Coyer JA, Kube M, Reinhardt R et al (2010) An expressed sequence tag analysis of the intertidal brown seaweeds Fucus serratus (L.) and F. vesiculosus (L.) (Heterokontophyta, Phaeophyceae) in response to abiotic stressors. Mar Biotechnol 12:195–213

    Article  CAS  PubMed  Google Scholar 

  • Reddy CRK, Jha B, Fujita Y, Ohno M (2008a) Seaweed micropropagation techniques and their potentials: an overview. J Appl Phycol 20:609–617

    Article  Google Scholar 

  • Reddy CRK, Gupta MK, Mantri VA, Jha B (2008b) Seaweed protoplasts: status, biotechnological perspectives and needs. J Appl Phycol 20:619–632

    Article  CAS  Google Scholar 

  • Reddy CRK, Gupta V, Jha B (2010) Developments in biotechnology of red algae. In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age. Springer, Dordrecht, pp 307–341

    Chapter  Google Scholar 

  • Radulovich R, Neori A, Valderrama D, Reddy CRK, Cronin H, Forster J (2015) Farming of seaweeds. In: Tiwari BK, Troy DJ (eds) Seaweed sustainability—food and non-food applications. Elsevier, Amsterdam

    Google Scholar 

  • Robinson N, Winberg P, Kirkendale L (2013) Genetic improvement of macroalgae: status to date and needs for the future. J Appl Phycol 25:703–716

    Article  Google Scholar 

  • Shan T, Pang S, Li J, Li X (2015) De novo transcriptome analysis of the gametophyte of Undaria pinnatifida (Phaeophyceae). J Appl Phycol 27:1011–1019

    Article  Google Scholar 

  • Smolina I, Kollias S, Jueterbock A, Coyer JA, Hoarau G (2016) Variation in thermal stress response in two populations of the brown seaweed, Fucus distichus, from the Arctic and subarctic intertidal. R Soc Open Sci 3:150429

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun P, Mao Y, Li G, Cao M, Kong F, Wang L, Bi G (2015) Comparative transcriptome profiling of Pyropia yezoensis (Ueda) M.S. Hwang & H.G. Choi in response to temperature stresses. BMC Genomics 16:463

    Article  PubMed  PubMed Central  Google Scholar 

  • Trivedi N, Baghel RS, Bothwell JH, Gupta V, Reddy CRK, Jha B, Lali A (2016) An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Sci Rep 6:30728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi N, Gupta V, Reddy CRK, Jha B (2015) Marine macroalgal biomass as a renewable source of bioethanol. In: Kim S-K, Lee C-G (eds) Marine bioenergy: trends and developments. CRC Publisher, Taylor and Francis Group, USA, pp 197–216

    Chapter  Google Scholar 

  • Wang W, Li H, Lin X, Yang S, Wang Z, Fang B (2015) Transcriptome analysis identifies genes involved in adventitious branches formation of Gracilaria lichenoides in vitro. Sci Rep 5:17099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu J, Sun J, Yin J et al (2014) Comparative analysis of four essential Gracilariaceae species in China based on whole transcriptomic sequencing. Acta Ocean Sin 33:54–62

    Article  CAS  Google Scholar 

  • Ye N, Zhang X, Miao M, Fan X, Zheng Y, Xu D et al (2015) Saccharina genomes provide novel insight into kelp biology. Nat Comm 6:6986

    Google Scholar 

  • Zhang X, Ye N, Liang C, Mou S, Fan Y, Xu J, Xu D, Zhuang Z (2012) De novo sequencing and analysis of the Ulva linza transcriptome to discover putative mechanisms associated with its successful colonization of coastal ecosystems. BMC Genomics 13:565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the researchers contributing in seaweed genomics. The first author (Vishal Gupta) would like to thank the Department of Science and Technology, India, for INSPIRE Faculty award to initiate seaweed functional genomics. VG also thanks the International Centre for Genetic Engineering and Biotechnology, India, for providing the research facility. VG is thankful to Dr. N Ramaiah, Chief Scientist, CSIR-National Institute of Oceanography for providing research support. The financial support received from PSC0206 is acknowledged to extend the seaweed functional genomics research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vishal Gupta or C. R. K. Reddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gupta, V., Jain, M., Reddy, C.R.K. (2017). Macroalgal Functional Genomics: A Missing Area. In: Kumar, M., Ralph, P. (eds) Systems Biology of Marine Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-62094-7_1

Download citation

Publish with us

Policies and ethics