Skip to main content

Ecophysiology and Plasticity of Wood and Phloem Formation

  • Chapter
  • First Online:
Dendroecology

Part of the book series: Ecological Studies ((ECOLSTUD,volume 231))

Abstract

Long-lived plants need to continuously adjust their structure to fit the changing environmental constraints. Xylem and phloem growth represent both the means used to achieve these structural adjustments and a good indicator of plant success and performance. This chapter reviews the growth dynamics of the xylem and phloem and explores how resource availability and environmental variation provides important context for understanding the impacts of global change. We first illustrate the intra-annual patterns of xylem and phloem growth in different areas of the world to highlight the variations caused by the environment. Then, the components of the growth process, from timing (phenology) to the rates and the characteristics of xylem anatomy are presented to explain how these components are marking valuable indications of the way plants growth respond to changing environmental conditions. Finally we discuss how wood formation can contribute to advancements in ecophysiology and dendroecology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfieri FJ, Evert RF (1968) Seasonal development of the secondary phloem in Pinus. Am J Bot 55:518–528

    Article  Google Scholar 

  • Alfieri FJ, Evert RF (1973) Structure and seasonal development of the secondary phloem in the Pinaceae. Bot Gaz 134:17–25

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EHT, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259(4):660–684

    Article  Google Scholar 

  • Arend M, Fromm J (2007) Seasonal change in the drought response of wood cell development in poplar. Tree Physiol 27:985–992

    Article  PubMed  Google Scholar 

  • von Arx G, Dietz H (2006) Growth rings in the roots of temperate forbs are robust annual markers. Plant Biol 8:224–233

    Article  Google Scholar 

  • von Arx G, Archer R, Hughes MK (2012) Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Ann Bot 109:1091–1100

    Article  Google Scholar 

  • Baas P, Wheeler E (2011) Wood anatomy and climate change. In: Hodkinson TR, Jones MB, Waldren S, JAN P (eds) Climate change, ecology and systematics. Cambridge University Press, Cambridge, pp 141–155

    Chapter  Google Scholar 

  • Balducci L, Deslauriers A, Giovannelli A, Rossi S, Rathgeber CBK (2013) Effects of temperature and water deficit on cambial activity and woody ring features in Picea mariana saplings. Tree Physiol 33:1006–1017. doi:10.1093/treephys/tpt073

    Article  PubMed  Google Scholar 

  • Balducci L, Deslauriers A, Giovannelli A, Beaulieu M, Delzon S, Rossi S, Rathgeber CBK (2015) How do drought and warming influence plant survival and wood traits of Picea mariana saplings? J Exp Bot 66(1):377–389

    Article  CAS  PubMed  Google Scholar 

  • Balducci L, Cuny H, Rathgeber C, Deslauriers A, Giovannelli A, Rossi S (2016) Compensatory mechanisms mitigate the effect of warming and drought on wood formation. Plant Cell Environ 39(6):1338–1352. doi:10.1111/pce.12689

    Article  CAS  PubMed  Google Scholar 

  • Barnett J (1971) Winter activity in the cambium of Pinus radiata. N Z J For Sci 1:208–222

    Google Scholar 

  • Battipaglia G, De Micco V, Brand WA, Linke P, Aronne G, Saurer M, Cherubini P (2010) Variations of vessel diameter and delta 13C in false rings of Arbutus unedo L. reflect different environmental conditions. New Phytol 188(4):1099–1112. doi:10.1111/j.1469-8137.2010.03443.x

    Article  CAS  PubMed  Google Scholar 

  • Bauch J (1986) Characteristics and response of wood in declining trees from forests affected by pollution. IAWA Bull 7(4):269–276

    Article  Google Scholar 

  • Beeckman H (2016) Wood anatomy and trait-based ecology. IAWA J 37(2):127–151. doi:10.1163/22941932-20160127

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Bosio F, Rossi S, Marcati CR (2016) Periodicity and environmental drivers of apical and lateral growth in a Cerrado woody species. Trees 30(5):1495–1505. doi:10.1007/s00468-016-1383-8

    Article  Google Scholar 

  • Boulouf-Lugo J, Deslauriers A, Rossi S (2012) Duration of xylogenesis in black spruce lengthened between 1950 and 2010. Ann Bot 110:1099–1108

    Article  PubMed  PubMed Central  Google Scholar 

  • Breshears DD, Myers OB, Meyer CW, Barnes FJ, Zou CB, Allen CD, McDowell NG, Pockman WT (2009) Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. Front Ecol Environ 7:185–189

    Article  Google Scholar 

  • Bryukhanova M, Fonti P (2013) Xylem plasticity allows rapid hydraulic adjustment to annual climatic variability. Trees 27(3):485–496. doi:10.1007/s00468-012-0802-8

    Article  Google Scholar 

  • Callado CH, Neto SJS, Scarano FR, Costa CG (2001) Periodicity of growth rings in some flood-prone trees of Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees 15:492–497

    Google Scholar 

  • Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185:471–480

    Article  PubMed  Google Scholar 

  • Carrer M, Brunetti M, Castagneri D (2016) The imprint of extreme climate events in century-long time series of wood anatomical traits in high-elevation conifers. Front Plant Sci 7:1–12. doi:10.3389/fpls.2016.00683

    Article  Google Scholar 

  • Castagneri D, Fonti P, von Arx G, Carrer M (2017) How does climate influence xylem morphogenesis over the growing season? Insights from long-term intra-ring anatomy in Norway spruce. Ann Bot. doi:10.1093/aob/mcw274

  • Choat B, Cobb AR, Jansen S (2008) Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytol 177(3):608–625. doi:10.1111/j.1469-8137.2007.02317.x

    Article  PubMed  Google Scholar 

  • Chuine I (2010) Why does phenology drive species distribution? Philos Trans R Soc B 365:3149–3160

    Article  Google Scholar 

  • Čufar K, Prislan P, de Luis M, Gričar J (2008) Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees 22:749–758

    Article  Google Scholar 

  • Cuny H, Rathgeber C (2016) Xylogenesis: Coniferous trees of temperate forests are listening to the climate tale during the growing season but only remember the last words! Plant Physiol 171:306–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuny HE, Rathgeber CBK, Lebourgeois F, Fortin M, Fournier M (2012) Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. Tree Physiol 32:612–625

    Article  PubMed  Google Scholar 

  • Cuny HE, Rathgeber CBK, Kiesse TS, Hartmann FP, Barbeito I, Fournier M (2013) Generalized additive models reveal the intrinsic complexity of wood formation dynamics. J Exp Bot 64(7):1983–1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuny HE, Rathgeber CBK, Frank D, Fonti P, Fournier M (2014) Kinetics of tracheid development explain conifer tree-ring structure. New Phytol 203:1231–1241

    Article  PubMed  Google Scholar 

  • Cuny HE, Rathgeber CBK, Frank D, Fonti P, Mäkinen H, Prislan P, Rossi S, del Castillo EM, Campelo P, Vavrčík H, Camarero JJ, Bryukhanova MV, Jyske T, Gričar J, Gryc V, De Luis M, Vieira J, Čufar K, Kirdyanov AV, Oberhuber W, Treml V, Huang JG, Li X, Swidrak I, Deslauriers A, Liang E, Nöjd P, Gruber A, Nabais C, Morin H, Krause C, King G, Fournier M (2015) Intra-annual dynamics of woody biomass production in coniferous forests. Nat Plants 1:15160. doi:10.1038/nplants.2015.160

    Article  CAS  PubMed  Google Scholar 

  • De Micco V, Saurer M, Aronne G, Tognetti R, Cherubini P (2007) Variations of wood anatomy and delta C-13 within-tree rings of coastal Pinus pinaster showing intra-annual density fluctuations. IAWA J 28(1):61–74

    Article  Google Scholar 

  • De Micco V, Balzano A, Čufar K, Aronne G, Gričar J, Merela M, Battipaglia G (2016) Timing of false ring formation in Pinus halepensis and arbutus Unedo in southern Italy: Outlook from an analysis of xylogenesis and tree-ring chronologies. Front Plant Sci 7:1–14. doi:10.3389/fpls.2016.00705

    Article  Google Scholar 

  • Denne MP (1976) Effects of environmental change on wood production and wood structure in Picea sitchensis seedlings. Ann Bot 40:1017–1028

    Article  Google Scholar 

  • Deslauriers A, Morin H, Bégin Y (2003) Cellular phenology of annual ring formation of Abies balsamea in the Québec boreal forest (Canada). Can J For Res 33:190–200

    Article  Google Scholar 

  • Deslauriers A, Rossi S, Anfodillo T, Saracino A (2008) Cambium phenology, wood formation and temperature thresholds in two contrasting years at high altitude in Southern Italy. Tree Physiol 28:863–871

    Article  PubMed  Google Scholar 

  • Deslauriers A, Giovannelli A, Rossi S, Castro G, Fragnelli G, Traversi L (2009) Intra-annual cambial activity and carbon availability in stem of poplar. Tree Physiol 29:1223–1235

    Article  CAS  PubMed  Google Scholar 

  • Deslauriers A, Beaulieu M, Balducci L, Giovannelli A, Gagnon MJ, Rossi S (2014) Impact of warming and drought on carbon balance related to wood formation in black spruce. Ann Bot 114(2):335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deslauriers A, Huang JG, Balducci L, Beaulieu M, Rossi S (2016) The contribution of carbon and water in modulating wood formation in black spruce saplings. Plant Physiol 170:2072–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeSoto L, De la Cruz M, Fonti P (2011) Intra-annual patterns of tracheid size in the Mediterranean tree Juniperus thurifera as an indicator of seasonal water stress. Can J For Res 41:1280–1294

    Article  Google Scholar 

  • Eilmann B, Zweifel R, Buchmann N, Fonti P, Rigling A (2009) Drought-induced adaptation of the xylem in Scots pine and pubescent oak. Tree Physiol 29(8):1011–1020. doi:10.1093/treephys/tpp035

    Article  PubMed  Google Scholar 

  • Eilmann B, Buchmann N, Siegwolf R, Saurer M, Cherubini P, Rigling A (2010) Fast response of Scots pine to improved water availability reflected in tree-ring width and delta 13C. Plant Cell Environ 33(8):1351–1360. doi:10.1111/j.1365-3040.2010.02153.x

    CAS  PubMed  Google Scholar 

  • Eilmann B, Zweifel R, Buchmann N, Graf Pannatier E, Rigling A (2011) Drought alters timing, quantity, and quality of wood formation in Scots pine. J Exp Bot 62:2763–2771

    Article  CAS  PubMed  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. John Wiley & Sons, Inc., Hoboken

    Book  Google Scholar 

  • Fonti P, Babushkina EA (2016) Tracheid anatomical responses to climate in a forest-steppe in Southern Siberia. Dendrochronologia 39:32–41. doi:10.1016/j.dendro.2015.09.002

    Article  Google Scholar 

  • Fonti P, García-González I (2008) Earlywood vessel size of oak as a potential proxy for spring precipitation in mesic sites. J Biogeogr 35(12):2249–2257. doi:10.1111/j.1365-2699.2008.01961.x

    Article  Google Scholar 

  • Fonti P, Jansen S (2012) Xylem plasticity in response to climate. New Phytol 195:734–736

    Article  PubMed  Google Scholar 

  • Fonti P, von Arx G, García-González I, Eilmann B, Sass-Klaassen U, Gartner H, Eckstein D (2010) Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol 185(1):42–53. doi:10.1111/j.1469-8137.2009.03030.x

    Article  PubMed  Google Scholar 

  • Fonti P, Bryukhanova MV, Myglan VS, Kirdyanov AV, Naumova OV, Vaganov EA (2013) Temperature-induced responses of xylem structure of Larix sibirica (Pinaceae) from the Russian Altay. Am J Bot 100(7):1332–1343. doi:10.3732/ajb.1200484

    Article  PubMed  Google Scholar 

  • Ford ED, Robards AW, Piney MD (1978) Influence of environmental factors on cell production and differentiation in the earlywood of Picea sitchensis. Ann Bot 42:683–692

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic, London

    Google Scholar 

  • Giovannelli A, Deslauriers A, Fragnelli G, Scaletti L, Castro G, Rossi S, Crivellaro A (2007) Evaluation of drought response of two poplar clones (Populus x canadensis Mönch ‘I-214’ and P. deltoides Marsh. ‘Dvina’) through high resolution analysis of stem growth. J Exp Bot 58:2673–2683

    Article  CAS  PubMed  Google Scholar 

  • Glerum C, Farrar JL (1966) Frost ring formation in the stems of some coniferous species. Can J Bot 44(7):879–886. doi:10.1139/b66-103

    Article  Google Scholar 

  • Gričar J, Čufar K (2008) Seasonal dynamics of phloem and xylem formation in silver fir and Norway spruce as affected by drought. Russ J Plant Physiol 55(4):538–543. doi:10.1134/s102144370804016x

    Article  CAS  Google Scholar 

  • Gričar J, Zupancic M, Čufar K, Koch G, Schmitt U, Oven P (2006) Effect of local heating and cooling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Ann Bot 97:943–951

    Article  PubMed  PubMed Central  Google Scholar 

  • Gričar J, Jagodic Š, Šefc B, Trajković J, Eler K (2014a) Can the structure of dormant cambium and the widths of phloem and xylem increments be used as indicators for tree vitality? Eur J For Res 133(3):551–562. doi:10.1007/s10342-014-0784-8

    Article  Google Scholar 

  • Gričar J, Prislan P, Gryc V, Vavrčík H, de Luis M, Čufar K (2014b) Plastic and locally adapted phenology in cambial seasonality and production of xylem and phloem cells in Picea abies from temperate environments. Tree Physiol 34(8):869–881. doi:10.1093/treephys/tpu026

    Article  PubMed  Google Scholar 

  • Gričar J, Jagodic Š, Prislan P (2015a) Structure and subsequent seasonal changes in the bark of sessile oak (Quercus petraea). Trees 29(3):747–757. doi:10.1007/s00468-015-1153-z

    Article  CAS  Google Scholar 

  • Gričar J, Prislan P, De Luis M, Gryc V, Hacurova J, Vavrčík H, Čufar K (2015b) Plasticity in variation of xylem and phloem cell characteristics of Norway spruce under different local conditions. Front Plant Sci 6. doi:10.3389/fpls.2015.00730

  • Gričar J, Prislan P, De Luis M, Novak K, Longares LA, Martinez del Castillo E, Čufar K (2016) Lack of annual periodicity in cambial production of phloem in trees from Mediterranean areas. IAWA J 37(2):332–348

    Article  Google Scholar 

  • Gruber A, Strobl S, Veit B, Oberhuber W (2010) Impact of drought on the temporal dynamics of wood formation in Pinus sylvestris. Tree Physiol 30:490–501

    Article  PubMed  PubMed Central  Google Scholar 

  • Gryc V, Hacura J, Vavrčík H, Urban J, Gebauer R (2012) Monitoring of xylem formation in Picea abies under drought stress influence. Dendrobiology 67:15–24

    Google Scholar 

  • Hartig R (1892) Ueber Dickenwachstum und Jahrringsbildung. Bot Zeit 50(176–180):193–196

    Google Scholar 

  • Hereş AM, Martínez-Vilalta J, López BC (2012) Growth patterns in relation to drought-induced mortality at two Scots pine (Pinus sylvestris L.) sites in NE Iberian Peninsula. Trees 26(2):621–630. doi:10.1007/s00468-011-0628-9

    Article  Google Scholar 

  • Hinckley TM, Lassoie JP (1981) Radial growth in conifers and deciduous trees: a comparison. Mitt Forstl Bundesversuchsanst Wien 142:17–56

    Google Scholar 

  • Holbrook NM, Zwieniecki MA (2003) Plant biology—Water gate. Nature 425(6956):361–361. doi:10.1038/425361a

    Article  CAS  PubMed  Google Scholar 

  • Hölttä T, Mäkinen H, Nöjd P, Mäkelä A, Nikinmaa E (2010) A physiological model of softwood cambial growth. Tree Physiol 30:1235–1252

    Article  PubMed  Google Scholar 

  • Huang J, Deslauriers A, Rossi S (2014) Xylem formation can be modeled statistically as a function of primary growth and cambium activity. New Phytol 203:831–841

    Article  CAS  PubMed  Google Scholar 

  • Jyske T, Hölttä T (2015) Comparison of phloem and xylem hydraulic architecture in Picea abies stems. New Phytol 205(1):102–115. doi:10.1111/nph.12973

    Article  CAS  PubMed  Google Scholar 

  • Jyske TM, Suuronen J-P, Pranovich AV, Laakso T, Watanabe U, Kuroda K, Abe H (2015) Seasonal variation in formation, structure, and chemical properties of phloem in Picea abies as studied by novel microtechniques. Planta 242(3):613–629. doi:10.1007/s00425-015-2347-8

    Article  CAS  PubMed  Google Scholar 

  • Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462

    Article  PubMed  Google Scholar 

  • Krepkowski J, Brauning A, Gebrekirstos A, Strobl S (2011) Cambial growth dynamics and climatic control of different tree life forms in tropical mountain forest in Ethiopia. Trees 25:59–70

    Article  Google Scholar 

  • Kutscha NP, Hyland F, Schwarzmann JM (1975) Certain seasonal changes in balsam fir cambium and its derivatives. Wood Sci Technol 9:175–188

    Article  Google Scholar 

  • Larson PR (1994) The vascular cambium: development and structure. Springer, Berlin

    Book  Google Scholar 

  • Li X, Liang E, Gričar J, Prislan P, Rossi S, Čufar K (2013) Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiol 33(1):48–56. doi:10.1093/treephys/tps113

    Article  CAS  PubMed  Google Scholar 

  • Li X, Camarero JJ, Case B, Liang E, Rossi S (2016) The onset of xylogenesis is not related to distance from the crown in Smith fir trees from the southeastern Tibetan Plateau. Can J For Res 46(6):885–889. doi:10.1139/cjfr-2016-0092

    Article  Google Scholar 

  • de Luis M, Novak K, Raventós J, Gričar J, Prislan P, Čufar K (2011) Climate factors promoting intra-annual density fluctuations in Aleppo pine (Pinus halepensis) from semiarid sites. Dendrochronologia 29:163–169

    Article  Google Scholar 

  • Lupi C, Morin H, Deslauriers A, Rossi S (2010) Xylem phenology and wood production: resolving the chicken-or-egg dilemma. Plant Cell Environ 33:1721–1730

    Article  PubMed  Google Scholar 

  • Martin-Benito D, Beeckman H, Cañellas I (2013) Influence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a mesic Mediterranean forest. Eur J For Res 132(1):33–45. doi:10.1007/s10342-012-0652-3

    Article  Google Scholar 

  • Martinez-Meier A, Sanchez L, Pastorino M, Gallo L, Rozenberg P (2008) What is hot in tree rings? The wood density of surviving Douglas-firs to the 2003 drought and heat wave. For Ecol Manag 256(4):837–843. doi:10.1016/j.foreco.2008.05.041

    Article  Google Scholar 

  • McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155(3):1051–1059. doi:10.1104/pp.110.170704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendivelso HA, Camarero JJ, Gutiérrez E, Castaño-Naranjo A (2016) Climatic influences on leaf phenology, xylogenesis and radial stem changes at hourly to monthly scales in two tropical dry forests. Agric For Meteorol 216:20–36. doi:10.1016/j.agrformet.2015.09.014

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatcza K, Mage F, Mestre A, Nordli O, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12(10):1969–1976. doi:10.1111/j.1365-2486.2006.01193.x

    Article  Google Scholar 

  • Minchin PEH, Lacointe A (2005) New understanding on phloem physiology and possible consequences for modelling long-distance carbon transport. New Phytol 166:771–779

    Article  CAS  PubMed  Google Scholar 

  • Moser L, Fonti P, Büntgen U, Esper J, Luterbacher J, Franzen J, Frank D (2010) Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. Tree Physiol 30(2):225–233

    Article  PubMed  Google Scholar 

  • Muller B, Pantin F, Genard M, Turc O, Freixes S, Piques M, Gibon Y (2011) Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot 62(6):1715–1729. doi:10.1093/jxb/erq438

    Article  CAS  PubMed  Google Scholar 

  • Novak K, De Luis M, Gričar J, Prislan P, Merela M, Smith KT, Čufar K (2016a) Missing and dark rings associated with drougth in Pinus halepensis. IAWA J 37:260–274

    Article  Google Scholar 

  • Novak K, De Luis M, Saz MA, Longares LA, Serrano Notivoli R, Raventós J, Čufar K, Gričar J, Di Filippo A, Piovesan G, Rathgeber CBK, Papadopoulos A, Smith KT (2016b) Missing rings in Pinus halepensis—the missing link to relate the tree-ring record to extreme climatic events. Front Plant Sci 7. doi:10.3389/fpls.2016.00727

  • Olano JM, Arzac A, Garcia-Cervigon AI, Von Arx G, Rozas V (2013) New star on the stage: amount of ray parenchyma in tree rings shows a link to climate. New Phytol 198:486–495

    Article  PubMed  Google Scholar 

  • Oliveira JM, Santarosa E, DePatta Pillar V, Roig FA (2009) Seasonal cambium activity in the subtropical rain forest tree Araucaria angustifolia. Trees 23:107–115

    Article  Google Scholar 

  • Pacheco A, Camarero JJ, Carrer M (2016) Linking wood anatomy and xylogenesis allows pinpointing of climate and drought influences on growth of coexisting conifers in continental Mediterranean climate. Tree Physiol 36(4):502–512. doi:10.1093/treephys/tpv125

    Article  PubMed  Google Scholar 

  • Panshin AJ, de Zeeuw C (1980) Textbook of wood technology, 4th edn. McGraw-Hill, New York

    Google Scholar 

  • Pantin F, Simonneau T, Muller B (2012) Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol 196(2):349–366. doi:10.1111/j.1469-8137.2012.04273.x

    Article  PubMed  Google Scholar 

  • Pellizzari E, Camarero JJ, Gazol A, Sangüesa-Barreda G, Carrer M (2016) Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback. Glob Chang Biol 22(6):2125–2137. doi:10.1111/gcb.13227

    Article  PubMed  Google Scholar 

  • Pérez-de-Lis G, Rossi S, Vázquez-Ruiz RA, Rozas V, García-González I (2016) Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. New Phytol 209(2):521–530. doi:10.1111/nph.13610

    Article  PubMed  Google Scholar 

  • Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20(9):503–510. doi:10.1016/j.tree.2005.05.011

    Article  PubMed  Google Scholar 

  • Piermattei A, Crivellaro A, Carrer M, Urbinati C (2015) The “blue ring”: anatomy and formation hypothesis of a new tree-ring anomaly in conifers. Trees 29(2):613–620. doi:10.1007/s00468-014-1107-x

    Article  CAS  Google Scholar 

  • Pittermann J, Sperry JS, Wheeler JK, Hacke UG, Sikkema EH (2006) Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant Cell Environ 29(8):1618–1628. doi:10.1111/1365-3040.2006.01539.x

    Article  PubMed  Google Scholar 

  • Priestley JH (1930) Studies in the physiology of cambial activity. New Phytol 29:1618–1628

    Google Scholar 

  • Prislan P, Gričar J, de Luis M, Smith KT, Čufar K (2013) Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agric For Meteorol 180:142–151. doi:10.1016/j.agrformet.2013.06.001

    Article  Google Scholar 

  • Rathgeber CBK, Rossi S, Bontemps JD (2011) Cambial activity related to tree size in a mature silver-fir plantation. Ann Bot 108:429–438

    Article  PubMed  PubMed Central  Google Scholar 

  • Rathgeber CBK, Cuny HE, Fonti P (2016) Biological basis of tree-ring formation: a crash course. Front Plant Sci 7. doi:10.3389/fpls.2016.00734

  • Ren P, Rossi S, Gričar J, Liang E, Čufar K (2015) Is precipitation a trigger of cambial reactivation in Juniperus przewalskii on the northeastern Tibetan Plateau? Ann Bot 115:629–639

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi S, Isabel N (2016) Bud break responds more strongly to daytime than night-time temperature under asymmetric experimental warming. Glob Chang Biol 23(1):446–454

    Article  PubMed  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2007) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170:301–310

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carrer M (2008a) Age-dependent xylogenesis in timberline conifers. New Phytol 177:199–208

    PubMed  Google Scholar 

  • Rossi S, Deslauriers A, Gričar J, Seo J-W, Rathgeber CBK, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008b) Critical temperatures for xylogenesis in conifers of cold climates. Glob Ecol Biogeogr 17:696–707

    Article  Google Scholar 

  • Rossi S, Rathgeber CBK, Deslauriers A (2009a) Comparing needle and shoot phenology with xylem development on three conifer species in Italy. Ann For Sci 66:206

    Article  Google Scholar 

  • Rossi S, Simard S, Rathgeber CBK, Deslauriers A, De Zan C (2009b) Effects of a 20-day-long dry period on cambial and apical meristem growth in Abies balsamea seedlings. Trees 23(1):85–93. doi:10.1007/s00468-008-0257-0

    Article  Google Scholar 

  • Rossi S, Morin H, Deslauriers A (2011a) Multi-scale influence of snowmelt on xylogenesis of black spruce. Arct Antarct Alp Res 43:457–464

    Article  Google Scholar 

  • Rossi S, Morin H, Deslauriers A, Plourde PY (2011b) Predicting timings of xylogenesis in black spruce under climate warming. Glob Chang Biol 17:614–625

    Article  Google Scholar 

  • Rossi S, Morin H, Deslauriers A (2012) Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis. J Exp Bot 63:2117–2126

    Article  CAS  PubMed  Google Scholar 

  • Rossi S, Girard MJ, Morin H (2014) Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob Chang Biol 20:2261–2271

    Article  PubMed  Google Scholar 

  • Rossi S, Anfodillo T, Čufar K, Cuny HE, Deslauriers A, Fonti P, Frank D, Gričar J, Gruber A, Huang JG, Jyske T, Kašpar J, King G, Krause C, Liang E, Makinen H, Morin H, Nöjd P, Oberhuber W, Prislan P, Rathgeber C, Saracino A, Swidrak I, Treml V (2016) Pattern of xylem phenology in conifers of cold ecosystems at the northern hemisphere. Glob Chang Biol 22:3804–3813

    Article  PubMed  Google Scholar 

  • Rowe N, Speck T (2005) Plant growth forms: an ecological and evolutionary perspective. New Phytol 166(1):61–72. doi:10.1111/j.1469-8137.2004.01309.x

    Article  PubMed  Google Scholar 

  • Sass-Klaassen U, Fonti P, Cherubini P, Gričar J, Robert EMR, Steppe K, Brauning A (2016) A tree-centered approach to assess impacts of extreme climatic events on forests. Front Plant Sci 7(1069):1–6

    Google Scholar 

  • Savage JA, Clearwater MJ, Haines DF, Klein T, Mencuccini M, Sevanto S, Turgeon R, Zhang C (2016) Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology? Plant Cell Environ 39(4):709–725. doi:10.1111/pce.12602

    Article  CAS  PubMed  Google Scholar 

  • Schiestl-Aalto P, Kulmala L, Mäkinen H, Nikinmaa E, Mäkela A (2015) CASSIA—a dynamic model for predicting intra-annual sink demand and interannual growth variation in Scots pine. New Phytol 206:647–659

    Article  CAS  PubMed  Google Scholar 

  • Schmitz N, Robert EMR, Verheyden A, Gitundu Kairo J, Beeckman H, Koedam N (2008) A patchy growth via successive and simultaneous cambia: key to success of the most widespread mangrove species Avicennia marina? Ann Bot 101:49–58

    Article  PubMed  Google Scholar 

  • Schweingruber FH (2007) Wood structure and environment. Springer, Berlin

    Google Scholar 

  • Seneviratne SI, Lüthi D, Litschi M, Schär C (2006) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209

    Article  CAS  PubMed  Google Scholar 

  • Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT (2014) How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ 37(1):153–161. doi:10.1111/pce.12141

    Article  CAS  PubMed  Google Scholar 

  • Simard S, Giovannelli A, Treydte K, Traversi ML, King GM, Frank D, Fonti P (2013) Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Tree Physiol 33:913–923. doi:10.1093/treephys/tpt075

    Article  CAS  PubMed  Google Scholar 

  • Skene DS (1969) The period of time taken by cambial derivatives to grow and differentiate into tracheids in Pinus radiata. Ann Bot 33:253–262

    Article  Google Scholar 

  • Skomarkova MV, Vaganov EA, Mund M, Knohl A, Linke P, Boerner A, Schulze ED (2006) Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees 20(5):571–586. doi:10.1007/s00468-006-0072-4

    Article  Google Scholar 

  • Sperry JS, Hacke UG, Pittermann J (2006) Size and function in conifer tracheids and angiosperm vessels. Am J Bot 93(10):1490–1500

    Article  PubMed  Google Scholar 

  • Spicer R, Groover A (2010) Evolution of development of vascular cambia and secondary growth. New Phytol 186:577–592

    Article  CAS  PubMed  Google Scholar 

  • Steppe K, Sterck F, Deslauriers A (2015) Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci 20:335–343

    Article  CAS  PubMed  Google Scholar 

  • Swidrak I, Gruber A, Oberhuber W (2014) Xylem and phloem phenology in co-occurring conifers exposed to drought. Trees 28(4):1161–1171. doi:10.1007/s00468-014-1026-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Torelli N, Shortle WC, Čufar K, Ferlin F, Smith KT (1999) Detecting changes in tree health and productivity of silver fir in Slovenia. Eur J For Pathol 29(3):187–197

    Article  Google Scholar 

  • Treml V, Kašpar J, Kuželová H, Gryc V (2015) Differences in intra-annual wood formation in Picea abies across the treeline ecotone, Giant Mountains, Czech Republic. Trees 29(2):515–526. doi:10.1007/s00468-014-1129-4

    Article  Google Scholar 

  • Turley DB, Chaudhry Q, Watkins RW, Clark JH, Deswarte FEI (2006) Chemical products from temperate forest tree species—Developing strategies for exploitation. Ind Crop Prod 24(3):238–243. doi:10.1016/j.indcrop.2006.06.016

    Article  CAS  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. Springer, New York

    Book  Google Scholar 

  • Valladares F, Gianoli E, Gomez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176(4):749–763. doi:10.1111/j.1469-8137.2007.02275.x

    Article  PubMed  Google Scholar 

  • Vichrová G, Gryc V, Vavrčík H (2013) Xylem formation in young norway spruce trees in drahany highland, Czech Republic. IAWA J 34(3):231–244. doi:10.1163/22941932-00000020

    Article  Google Scholar 

  • Vieira J, Rossi S, Campelo F, Nabais C (2014) Are neighboring trees in tune? Wood formation in Pinus pinaster. Eur J For Res 133:41–50

    Article  Google Scholar 

  • Vieira J, Campelo F, Rossi S, Carvalho A, Freitas H, Nabais C (2015) Adjustment capacity of Maritime pine cambial activity in drought-prone environments. PLoS One 10(5):e0126223

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Payette S, Begin Y (2000) A quantitative definition of light rings in black spruce (Picea mariana) at the arctic treeline in Northern Québec, Canada. Arct Antarct Alp Res 32(3):324–330

    Article  Google Scholar 

  • Wilmking M, Hallinger M, Van Bogaert R, Kyncl T, Babst F, Hahne W, Juday GP, de Luis M, Novak K, Völlm C (2012) Continuously missing outer rings in woody plants at their distributional margins. Dendrochronologia 30(3):213–222. doi:10.1016/j.dendro.2011.10.001

    Article  Google Scholar 

  • Wilson BF (1964) A model for cell production by the cambium of conifers. In: Zimmerman M (ed) The formation of wood in forest trees. Academic, New York, pp 19–36

    Chapter  Google Scholar 

  • Wodzicki TJ (1971) Mechanism of xylem differentiation in Pinus silvestris L. J Exp Bot 22(72):670–687

    Article  Google Scholar 

  • Zalloni E, de Luis M, Campelo F, Novak K, De Micco V, Di Filippo A, Vieira J, Nabais C, Rozas V, Battipaglia G (2016) Climatic signals from intra-annual density fluctuation frequency in mediterranean pines at a regional scale. Front Plant Sci 7. doi:10.3389/fpls.2016.00579

  • Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329(5994):940–943

    Article  CAS  PubMed  Google Scholar 

  • Ziaco E, Biondi F (2016) Tree growth, cambial phenology, and wood anatomy of limber pine at a Great Basin (USA) mountain observatory. Trees:1–15. doi:10.1007/s00468-016-1384-7

  • Ziaco E, Biondi F, Rossi S, Deslauriers A (2016) Environmental drivers of cambial phenology in Great Basin bristlecone pine. Tree Physiol 36(7):818–831. doi:10.1093/treephys/tpw006

    Article  PubMed  Google Scholar 

  • Zweifel R, Zimmermann L, Zeugin F, Newbery DM (2006) Intra-annual radial growth and water relations of trees: implications towards a growth mechanism. J Exp Bot 57(6):1445–1459. doi:10.1093/jxb/erj125

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This chapter was partly funded by the CRSNG Discovery Grant of A. Deslauriers. P. Fonti received support from the Swiss National Science Foundation (projects INTEGRAL-121859 and LOTFOR-150205). The authors thank the European Science Foundation supporting the LESC Strategic Workshop and the COST Action STReESS—Studying Tree Responses to extreme Events: a SynthesiS (FP1106) for creating the favorable environment for the realization of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Deslauriers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deslauriers, A., Fonti, P., Rossi, S., Rathgeber, C.B.K., Gričar, J. (2017). Ecophysiology and Plasticity of Wood and Phloem Formation. In: Amoroso, M., Daniels, L., Baker, P., Camarero, J. (eds) Dendroecology. Ecological Studies, vol 231. Springer, Cham. https://doi.org/10.1007/978-3-319-61669-8_2

Download citation

Publish with us

Policies and ethics