Skip to main content

Graphene-Based Coatings for Dental Implant Surface Modification

  • Chapter
  • First Online:
Carbon-related Materials in Recognition of Nobel Lectures by Prof. Akira Suzuki in ICCE

Abstract

Among the most promising nanomaterials, an extensive emphasis was drawn onto graphene-based ones for biomedical applicability, being triggered by its exotic properties such as biocompatibility, electric conductivity, and transparency, excellent aqueous processability, amphiphilicity and surface functionalisation degree. The tuneable chemistry and the excellent mechanical, tribological, as well as corrosion properties of graphene-based materials have indicated their potential applications in implant material. Given the growing demand for designing advanced new implant surfaces to control the interactions with the surrounding biological environment in order to improve their biocompatibility and bioactivity and enhance their corrosion resistance, this chapter highlights the approaches for surface modification of dental implants with graphene nanomaterials as surface coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Chen, Y. Jin, Periodontal tissue engineering and regeneration: current approaches and expanding opportunities. Tissue Eng. B 16, 219 (2010)

    Article  Google Scholar 

  2. N. Huebsch, D.J. Mooney, R. Article, Inspiration and application in the evolution of biomaterials. Nature 462, 426 (2009)

    Article  Google Scholar 

  3. D.E. Ingber, Principles of Tissue Engineering (Elsevier, Amsterdam, 2000), p. 101

    Book  Google Scholar 

  4. F. Watari, N. Takashi, A. Yokoyama, M. Uo, T. Akasaka, Y. Sato, S. Abe, Y. Totsuka, K. Tohji, Material nanosizing effect on living organisms: non-specific, biointeractive, physical size effects. J.R. Soc Interface 6, S371 (2009)

    Article  Google Scholar 

  5. Z.J. Han, A.E. Rider, M. Ishaq, S. Kumar, A. Kondyurin, M.M.M. Bilek, I. Levchenko, K.K. Ostrikov, Carbon nanostructures for hard tissue engineering. RSC Adv. 3, 11058 (2013)

    Article  Google Scholar 

  6. G.Y. Chen, D.W. Pang, S.M. Hwang, H.Y. Tuan, Y.C. Hu, A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33, 418 (2012)

    Article  Google Scholar 

  7. A. Pruna, Advances in Carbon Nanotube Technology for Corrosion Applications in Handbook of Polymer Nanocomposites, vol B (Springer, Berlin, 2015), pp. 335–359. doi:10.1007/978-3-642-45229-1_36

    Google Scholar 

  8. T.R. Nayak, H. Andersen, V.S. Makam, C. Khaw, S. Bae, X. Xu, P.L.R. Ee, J.H. Ahn, B.H. Hong, G. Pastorin, B. Özyilmaz, Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5, 4670 (2011)

    Article  Google Scholar 

  9. V. Sollazzo, A. Palmieri, L. Scapoli, M. Martinelli, A. Girardi, F. Alviano, A. Pellati, V. Perrotti, F. Carinci, Bio-Oss® acts on stem cells derived from peripheral blood. Oman Med J 25, 26–31 (2010)

    Article  Google Scholar 

  10. M. Gahlert, S. Röhling, M. Wieland, S. Eichhorn, H. Küchenhoff, H. Kniha, A comparison study of the osseointegration of zirconia and titanium dental implants. A biomechanical evaluation in the maxilla of pigs. Clin. Implant. Dent. Relat. Res. 12, 297 (2010)

    Article  Google Scholar 

  11. R.A. de Medeiros, A.J. Vechiato-Filho, E.P. Pellizzer, J.V. Quinelli Mazaro, D.M. dos Santos, M. Coelho Goiato, Analysis of the peri-implant soft tissues in contact with zirconia abutments: an evidence-based literature review. J. Contemp. Dent. Pract. 14, 567 (2013)

    Article  Google Scholar 

  12. Y.T. Sul, B.S. Kang, C. Johansson, H.S. Um, C.J. Park, T. Albrektsson, The roles of surface chemistry and topography in the strength and rate of osseointegration of titanium implants in bone. J. Biomed. Mater. Res. Part A 89, 942 (2009)

    Article  Google Scholar 

  13. A.M. Pedersen, A. Bardow, S.B. Jensen, B. Nauntofte, Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion. Oral Dis. 8, 117 (2002)

    Article  Google Scholar 

  14. Y. Mu, T. Kobayashi, M. Sumita, A. Yamamoto, T. Hanawa, Metal ion release from titanium with active oxygen species generated by rat macrophages in vitro. J. Biomed. Mater. Res. 49, 238 (2000)

    Article  Google Scholar 

  15. L. Evrard, D. Waroquier, D. Parent, Allergies to dental metals. Titanium: a new allergen. Rev. Med. Brux. 31(1), 44 (2010)

    Google Scholar 

  16. Y. Wang, G. Du, H. Liu, D. Liu, S. Qin, N. Wang, C. Hu, X. Tao, J. Jiao, J. Wang, Z.Y. Wang, Nanostructured sheets of Ti-O nanobelts for gas sensing and antibacterial applications. Adv. Funct. Mater. 18, 1131 (2008)

    Article  Google Scholar 

  17. D.L. Cochran, R.K. Schenk, A. Lussi, F.L. Higginbottom, D. Buser, Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J. Biomed. Mater. Res. 40(1) (1998)

    Google Scholar 

  18. A. Wennerberg, C. Hallgren, C. Johansson, S. Danelli, A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. Clin. Oral Implants Res. 9, 11 (1998)

    Article  Google Scholar 

  19. D. Duraccio, F. Mussano, M.G. Faga, Biomaterials for dental implants: current and future trends. J. Mater. Sci. 50, 4779 (2015)

    Article  Google Scholar 

  20. M.A. Atieh, N.H.M. Alsabeeha, C.M. Jr Faggion, W.J. Duncan, The frequency of peri-implant diseases: a systematic review and meta-analysis. J. Periodontol. 84, 1586 (2013)

    Google Scholar 

  21. L. Treccani, T. Yvonne Klein, F. Meder, K. Pardun, K. Rezwan, Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomater. 9, 7115 (2013)

    Article  Google Scholar 

  22. Y.Y. Shi, M. Li, Q. Liu, Z.J. Jia, X.C. Xu, Y. Cheng, Y.F. Zheng, J. Mater. Sci. Mater. Med. 27, 48 (2016)

    Article  Google Scholar 

  23. A. Pruna, D. Pullini, D. Mataix Busquets, Electrochemical Fabrication of Graphene-Based Nanomaterials in Handbook of Nanoelectrochemistry (Springer, Cham, 2016), pp. 3–22. doi:10.1007/978-3-319-15207-3_6-1

    Google Scholar 

  24. A.K. Geim, Graphene: status and prospects. Science 324, 1530 (2009)

    Article  Google Scholar 

  25. S. Goenka, V. Sant, S. San, Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 173, 75 (2014)

    Article  Google Scholar 

  26. W.G. La, S. Park, H.H. Yoon, G.J. Jeong, T.J. Lee, S.H. Bhang, J.Y. Han, K. Char, B.S. Kim, Delivery of a therapeutic protein for bone regeneration from a substrate coated with graphene oxide. Small 9, 4051 (2013)

    Article  Google Scholar 

  27. H.S. Jung, T. Lee, I.K. Kwon, H.S. Kim, S.K. Hahn, C.S. Lee, Surface modification of Multipass caliber-rolled Ti alloy with dexamethasone-loaded graphene for dental applications. ACS Appl. Mater. Interfaces 7, 9598 (2015)

    Article  Google Scholar 

  28. W.C. Lee, C.H. Lim, H. Shi, L.A. Tang, Y. Wang, C.T. Lim, K.P. Loh, Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5, 7334 (2011)

    Article  Google Scholar 

  29. L. Yang, L. Zhang, T.J. Webster, Carbon nanostructures for orthopaedic medical applications. Nanomedicine 6, 1231 (2011)

    Article  Google Scholar 

  30. K.H. Liao, Y.S. Lin, C.W. Macosko, C.L. Haynes, Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater. Interfaces 3, 2607 (2011)

    Article  Google Scholar 

  31. A.M. Pinto, I.C. Goncalves, F.D. Magalhaes, Graphene-based materials biocompatibility: a review. Colloids Surf. B: Biointerfaces 111, 188 (2013)

    Article  Google Scholar 

  32. S. Nagarajan, M. Mohana, P. Sudhagar, V. Raman, T. Tishimura, S. Kim, Y.S. Kang, N. Rajendran, Nanocomposite coatings on biomedical grade stainless steel for improved corrosion resistance and biocompatibility. ACS Appl. Mater. Interfaces 4, 5134 (2012)

    Article  Google Scholar 

  33. L. Zhang, T.J. Webster, Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4, 66 (2009)

    Article  Google Scholar 

  34. H. Chen, M.B. Müller, K.J. Gilmore, G.G. Wallace, D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 20, 3557 (2008)

    Article  Google Scholar 

  35. A. Krishnamurthy, V. Gadhamshetty, R. Mukherjee, Z. Chen, W. Ren, H.M. Cheng, N. Koratkar, Passivation of microbial corrosion using a graphene coating. Carbon 56, 45 (2013)

    Article  Google Scholar 

  36. M. Kalisz, M. Grobelny, M. Mazur, M. Zdrojek, D. Wojcieszak, M. Świniarski, J. Judek, D. Kaczmarek, Comparison of mechanical and corrosion properties of graphene monolayer on Ti–Al–V and nanometric Nb2O5 layer on Ti–Al–V alloy for dental implants applications. Thin Solid Films 589, 356 (2015)

    Article  Google Scholar 

  37. M. Schriver, W. Regan, W.J. Gannett, A.M. Zaniewski, M.F. Crommie, A. Zettl, Graphene as a long-term metal oxidation barrier: worse than nothing. ACS Nano 7, 5763 (2013)

    Article  Google Scholar 

  38. F. Zhou, Z.T. Li, G.J. Shenoy, L. Li, H.T. Liu, Enhanced room-temperature corrosion of copper in the presence of graphene. ACS Nano 7, 6939 (2013)

    Article  Google Scholar 

  39. C. Zhao, S. Pandit, Y. Fu, I. Mijakovic, A. Jesorka, Graphene oxide based coatings on nitinol for biomedical implant applications: effectively promote mammalian cell growth but kill bacteria. J. Liu RSC Adv. 6, 38124 (2016)

    Article  Google Scholar 

  40. H. Liu, J. Cheng, F. Chen, F. Hou, D. Bai, P. Xi, Z. Zeng, Biomimetic and cell-mediated mineralization of hydroxyapatite by carrageenan functionalized graphene oxide. ACS Appl. Mater. Interfaces 6, 3132 (2014)

    Article  Google Scholar 

  41. H.S. Jung, Y.J. Choi, J. Jeong, Y. Lee, B. Hwang, J. Jang, J.H. Shim, Y.S. Kim, H.S. Choi, S.H. Oh, C.S. Lee, D.W. Cho, S.K. Hahn, Nanoscale graphene coating on commercially pure titanium for accelerated bone regeneration. RSC Adv. 6, 26719 (2016)

    Article  Google Scholar 

  42. J.H. Lee, Y.C. Shin, S.M. Lee, O.S. Jin, S.H. Kang, S.W. Hong, C.M. Jeong, J.B. Huh, D.W. Han, Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Sci. Rep. 5, 18833 (2015)

    Article  Google Scholar 

  43. M. Marimuthu, M. Veerapandian, S. Ramasundaram, S.W. Hong, P. Sudhagar, S. Nagarajan, V. Raman, E. Ito, S. Kim, K. Yun, Y.S. Kang, Sodium functionalized graphene oxide coated titanium plates for improved corrosion resistance and cell viability. Appl. Surf. Sci. 293, 124 (2014)

    Article  Google Scholar 

  44. K. Koch, H. Leffert, Increased sodium ion influx is necessary to initiate rat hepatocyte proliferation. Cell 18, 153 (1979)

    Article  Google Scholar 

  45. A. Pruna, Q. Shao, M. Kamruzzaman, J.A. Zapien, A. Ruotolo, Enhanced electrochemical performance of ZnO nanorod core/polypyrrole shell arrays by graphene oxide. Electrochim. Acta 187, 517 (2016)

    Article  Google Scholar 

  46. A. Pruna, Q. Shao, M. Kamruzzaman, Y.Y. Li, J.A. Zapien, D. Pullini, D. Busquets Mataix, A. Ruotolo, Effect of ZnO core electrodeposition conditions on electrochemical and photocatalyticproperties of polypyrrole-graphene oxide shelled nanoarrays. Appl. Surf. Sci. 392, 801 (2017)

    Article  Google Scholar 

  47. A. Sahu, W. Choi, G. Tae, A stimuli-sensitive injectable graphene oxide composite hydrogel. Chem. Commun. 48, 5820 (2012)

    Article  Google Scholar 

  48. H. Wang, N. Eliaz, L.W. Hobbs, The nanostructure of an electrochemically deposited hydroxyapatite coating. Mater. Lett. 65, 2455 (2011)

    Article  Google Scholar 

  49. A.R. Boccaccini, J. Cho, T. Subhani, C. Kaya, F. Kaya, Electrophoretic deposition of carbon nanotube-ceramic nanocomposites. J. Eur. Ceram. Soc. 30(5), 1115 (2010)

    Article  Google Scholar 

  50. C. Kaya, I. Singh, A.R. Boccaccini, Multi-walled carbon nanotube-reinforced hydroxyapatite layers on Ti6Al4V medical implants by electrophoretic deposition (EPD). Adv. Eng. Mater. 10, 131 (2008)

    Article  Google Scholar 

  51. A. Jankovic, S. Eraković, M. Vukašinović-Sekulić, V. Mišković-Stanković, S.J. Park, K.Y. Rhee, Graphene-based antibacterial composite coatings electrodeposited on titanium for biomedical applications. Prog. Org. Coat. 83, 1 (2015)

    Article  Google Scholar 

  52. L. Zhang, W. Liu, C. Yue, T. Zhang, P. Li, Z. Xing, Y. Chen, A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon 61, 105 (2013)

    Article  Google Scholar 

  53. C. Zhao, S. Pandit, Y. Fu, I. Mijakovic, A. Jesorka, J. Liu, Graphene oxide based coatings on nitinol for biomedical implant applications: effectively promote mammalian cell growth but kill bacteria. RSC Adv. 6, 38124 (2016)

    Article  Google Scholar 

  54. P.F. Li, Y. Xu, X.-H. Cheng, Chemisorption of thermal reduced graphene oxide nano-layer film on TNTZ surface and its tribological behavior. Surf. Coat. Technol. 232, 331 (2013)

    Article  Google Scholar 

  55. P.F. Li, H. Zhou, X.-H. Cheng, Nano/micro tribological behaviors of a self-assembled graphene oxide nanolayer on Ti/titanium alloy substrates. Appl. Surf. Sci. 285, 937 (2013)

    Article  Google Scholar 

  56. P.F. Li, H. Zhou, X. Cheng, Investigation of a hydrothermal reduced graphene oxide nano coating on Ti substrate and its nano-tribological behavior. Surf. Coat. Technol. 254, 298 (2014)

    Article  Google Scholar 

  57. I.D. Meirelles, N.B. Nardi, Methodology, biology and clinical applications of mesenchymal stem cells. Front. Biosci. 14, 4281 (2009)

    Article  Google Scholar 

  58. B.M. Seo, M. Miura, S. Gronthos, P.M. Bartold, S. Batouli, J. Brahim, M. Young, P.G. Robey, C.Y. Wang, S. Shi, Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364, 149 (2004)

    Article  Google Scholar 

  59. S. Razzouk, R. Schoor, Mesenchymal stem cells and their challenges for bone regeneration and osseointegration. J. Periodontol. 83, 547 (2012)

    Article  Google Scholar 

  60. P.M. Bartold, Y. Xiao, S.P. Lyngstaadas, M.L. Paine, M.L. Snead, Principles and applications of cell delivery systems for periodontal regeneration. Periodontol. 2000 41, 123 (2006)

    Article  Google Scholar 

  61. Z. Yuan, H. Nie, S. Wang, C.H. Lee, A. Li, S.Y. Fu, H. Zhou, L. Chen, J.J. Mao, Biomaterial selection for tooth regeneration. Tissue Eng. Part B Rev. 17, 373 (2011)

    Article  Google Scholar 

  62. D. Olteanu, A. Filip, C. Socaci, A.R. Biris, X. Filip, M. Coros, M.C. Rosu, F. Pogacean, C. Alb, I. Baldea, P. Bolfa, S. Pruneanu, Cytotoxicity assessment of graphene-based nanomaterials on human dental follicle stem cells. Colloids Surf. B: Biointerfaces 136, 791 (2015)

    Article  Google Scholar 

  63. F.J. Rodríguez-Lozano, D. García-Bernal, S. Aznar-Cervantes, M.A. Ros-Roca, M.C. Algueró, N.M. Atucha, A.A. Lozano-García, J.M. Moraleda, J.L. Cenis, Effects of composite films of silk fibroin and graphene oxide on the proliferation, cell viability and mesenchymal phenotype of periodontal ligament stem cells. J. Mater. Sci. Mater. Med. 25, 2731 (2014)

    Article  Google Scholar 

  64. J. Kim, K.S. Choi, Y. Kim, K.T. Lim, H. Seonwoo, Y. Park, D.H. Kim, P.H. Choung, C.S. Cho, S.Y. Kim, Y.H. Choung, J.H. Chung, Bioactive effects of graphene oxide cell culture substratum on structure and function of human adipose-derived stem cells. J. Biomed. Mater. Res. A 101, 3520 (2013)

    Article  Google Scholar 

  65. N. Li, Q. Zhang, S. Gao, Three dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci Rep 3, 1604 (2013)

    Article  Google Scholar 

  66. L. Yan, F. Zhao, S. Li, Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallo-fullerenes, and graphenes. Nano 3, 362 (2011)

    Google Scholar 

  67. R. Justin, B. Chen, Characterisation and drug release performance of biodegradable chitosan – Graphene oxide nanocomposites. Carbohydr. Polym. 103, 70 (2014)

    Article  Google Scholar 

  68. S.H. Ku, C.B. Park, Myoblast differentiation on graphene oxide. Biomaterials 34, 2017 (2013)

    Article  Google Scholar 

  69. L. Hui, J.G. Piao, J. Auletta, K. Hu, Y. Zhu, T. Meyer, H. Liu, L. Yang, Availability of the basal planes of graphene oxide determines whether it is antibacterial. ACS Appl. Mater. Interfaces 6, 13183 (2014)

    Article  Google Scholar 

  70. S. Agarwal, X. Zhou, F. Ye, Q. He, G.C.K. Chen, J. Soo, F. Boey, H. Zhang, P. Chen, Interfacing live cells with nanocarbon substrates. Langmuir 26, 2244 (2010)

    Article  Google Scholar 

  71. T. Lammel, P. Boisseaux, M.L. Fernández-Cruz, J.M. Navas, Internalization and cytotoxicity of graphene oxide and carboxyl graphene nanoplatelets in the human hepatocellular carcinoma cell line Hep G2. Part. Fibre Toxicol. 10, 27 (2013)

    Article  Google Scholar 

  72. J. He, X. Zhu, Z. Qi, C. Wang, X. Mao, C. Zhu, Z. He, M. Li, Z. Tang, Killing dental pathogens using antibacterial graphene oxide. ACS Appl. Mater. Interfaces 7, 5605 (2015)

    Article  Google Scholar 

  73. O.N. Ruiz, K.A.S. Fernando, B. Wang, N.A. Brown, P.G. Luo, N.D. McNamara, M. Vangsness, Y. Sun, C.E. Bunker, Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5, 8100 (2011)

    Article  Google Scholar 

  74. S. Kulshrestha, S. Khan, R. Meena, B.R. Singh, A.U. Khan, A graphene/zinc oxide nanocomposite film protects dental implant surfaces against cariogenic Streptococcus mutans. Biofouling 30, 1281 (2014)

    Article  Google Scholar 

  75. K. Yang, J. Wan, S. Zhang, Y. Zhang, S.T. Lee, Z. Liu, In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 5, 516 (2011)

    Article  Google Scholar 

  76. E.L.K. Chng, M. Pumera, The toxicity of graphene oxides: dependence on the oxidative methods used. Chemistry 19, 8227 (2013)

    Article  Google Scholar 

  77. W. Hu, C. Peng, M. Lv, X. Li, Y. Zhang, N. Chen, C. Fan, Q. Huang, Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 5, 3693–3700 (2011)

    Article  Google Scholar 

  78. K.H. Liao et al., Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater. Interfaces 3, 2607 (2011)

    Article  Google Scholar 

  79. L. Horváth, A. Magrez, M. Burghard, K. Kern, L. Forró, B. Schwaller, Evaluation of the toxicity of graphene derivatives on cells of the lung luminal surface. Carbon 64, 45 (2013)

    Article  Google Scholar 

  80. O. Akhavan, E. Ghaderi, A. Akhavan, Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33, 8017 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from Romanian National Authority for Scientific Research and Innovation, CNCS – UEFISCDI (project number PN-II-RU-TE-2014-4-0806), is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alina Pruna or Andrada Soanca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pruna, A., Pullini, D., Soanca, A. (2017). Graphene-Based Coatings for Dental Implant Surface Modification. In: Kaneko, S., et al. Carbon-related Materials in Recognition of Nobel Lectures by Prof. Akira Suzuki in ICCE. Springer, Cham. https://doi.org/10.1007/978-3-319-61651-3_6

Download citation

Publish with us

Policies and ethics