Skip to main content

The Cellular and Molecular Mechanisms of Hematopoiesis

  • Chapter
  • First Online:
Bone Marrow Failure

Part of the book series: Pediatric Oncology ((PEDIATRICO))

Abstract

Hematopoiesis is a complex and dynamic process where mature blood cells of the myeloid and lymphoid lineages are produced from a common hematopoietic progenitor cell. In adult mammals, this process occurs within the bone marrow where hematopoietic progenitors integrate signals and cues from the microenvironment to activate gene expression programs that control lineage specification and maturation. In this chapter, we will review the cellular intrinsic and extrinsic factors that contribute to the regulation of hematopoiesis in the adult bone marrow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi T, Alam R (1998) The mechanism of IL-5 signal transduction. Am J Physiol 275(3 Pt 1):C623–C633

    Article  CAS  PubMed  Google Scholar 

  • Agache I, Strasser DS, Klenk A, Agache C, Farine H, Ciobanu C et al (2016) Serum IL-5 and IL-13 consistently serve as the best predictors for the blood eosinophilia phenotype in adult asthmatics. Allergy 71(8):1192–1202

    Article  CAS  PubMed  Google Scholar 

  • Alder JK, Georgantas RW III, Hildreth RL, Kaplan IM, Morisot S, Yu X et al (2008) Kruppel-like factor 4 is essential for inflammatory monocyte differentiation in vivo. J Immunol 180(8):5645–5652

    Article  CAS  PubMed  Google Scholar 

  • Alexander WS, Lyman SD, Wagner EF (1991) Expression of functional c-kit receptors rescues the genetic defect of W mutant mast cells. EMBO J 10(12):3683–3691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliahmad P, de la Torre B, Kaye J (2010) Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nat Immunol 11(10):945–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antony-Debre I, Bluteau D, Itzykson R, Baccini V, Renneville A, Boehlen F et al (2012) MYH10 protein expression in platelets as a biomarker of RUNX1 and FLI1 alterations. Blood 120(13):2719–2722

    Article  CAS  PubMed  Google Scholar 

  • Barreda DR, Hanington PC, Belosevic M (2004) Regulation of myeloid development and function by colony stimulating factors. Dev Comp Immunol 28(5):509–554

    Article  CAS  PubMed  Google Scholar 

  • Beck TC, Gomes AC, Cyster JG, Pereira JP (2014) CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow. J Exp Med 211(13):2567–2581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bettigole SE, Lis R, Adoro S, Lee AH, Spencer LA, Weller PF et al (2015) The transcription factor XBP1 is selectively required for eosinophil differentiation. Nat Immunol 16(8):829–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boos MD, Yokota Y, Eberl G, Kee BL (2007) Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J Exp Med 204(5):1119–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouffi C, Kartashov AV, Schollaert KL, Chen X, Bacon WC, Weirauch MT et al (2015) Transcription Factor Repertoire of Homeostatic Eosinophilopoiesis. J Immunol 195(6):2683–2695

    Article  CAS  PubMed  Google Scholar 

  • Broughton SE, Nero TL, Dhagat U, Kan WL, Hercus TR, Tvorogov D et al (2015) The betac receptor family - structural insights and their functional implications. Cytokine 74(2):247–258

    Article  CAS  PubMed  Google Scholar 

  • Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846

    Article  CAS  PubMed  Google Scholar 

  • Chow A, Huggins M, Ahmed J, Hashimoto D, Lucas D, Kunisaki Y et al (2013) CD169(+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 19(4):429–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie DA, Xu LS, Turkistany SA, Solomon LA, Li SK, Yim E et al (2015) PU.1 opposes IL-7-dependent proliferation of developing B cells with involvement of the direct target gene bruton tyrosine kinase. J Immunol 194(2):595–605

    Article  CAS  PubMed  Google Scholar 

  • Chu VT, Frohlich A, Steinhauser G, Scheel T, Roch T, Fillatreau S et al (2011) Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nat Immunol 12(2):151–159

    Article  CAS  PubMed  Google Scholar 

  • Clark MR, Mandal M, Ochiai K, Singh H (2014) Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling. Nat Rev Immunol 14(2):69–80

    Article  CAS  PubMed  Google Scholar 

  • Cullen SM, Mayle A, Rossi L, Goodell MA (2014) Hematopoietic stem cell development: an epigenetic journey. Curr Top Dev Biol 107:39–75

    Article  CAS  PubMed  Google Scholar 

  • Dahl R, Walsh JC, Lancki D, Laslo P, Iyer SR, Singh H et al (2003) Regulation of macrophage and neutrophil cell fates by the PU.1:C/EBPalpha ratio and granulocyte colony-stimulating factor. Nat Immunol 4(10):1029–1036

    Article  CAS  PubMed  Google Scholar 

  • Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S et al (2002) Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99(1):111–120

    Article  CAS  PubMed  Google Scholar 

  • Daly ME (2017) Transcription factor defects causing platelet disorders. Blood Rev 31:1

    Article  CAS  PubMed  Google Scholar 

  • Davoine F, Lacy P (2014) Eosinophil cytokines, chemokines, and growth factors: emerging roles in immunity. Front Immunol 5:570

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • De Obaldia ME, Bhandoola A (2015) Transcriptional regulation of innate and adaptive lymphocyte lineages. Annu Rev Immunol 33:607–642

    Article  PubMed  CAS  Google Scholar 

  • DeKoter RP, Lee HJ, Singh H (2002) PU.1 regulates expression of the interleukin-7 receptor in lymphoid progenitors. Immunity 16(2):297–309

    Article  CAS  PubMed  Google Scholar 

  • DeKoter RP, Kamath MB, Houston IB (2007) Analysis of concentration-dependent functions of PU.1 in hematopoiesis using mouse models. Blood Cells Mol Dis 39(3):316–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delconte RB, Shi W, Sathe P, Ushiki T, Seillet C, Minnich M et al (2016) The helix-loop-helix protein ID2 governs NK cell fate by tuning their sensitivity to interleukin-15. Immunity 44(1):103–115

    Article  CAS  PubMed  Google Scholar 

  • Dent LA, Strath M, Mellor AL, Sanderson CJ (1990) Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med 172(5):1425–1431

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495(7440):231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doulatov S, Notta F, Laurenti E, Dick JE (2012) Hematopoiesis: a human perspective. Cell Stem Cell 10(2):120–136

    Article  CAS  PubMed  Google Scholar 

  • Doyle AD, Jacobsen EA, Ochkur SI, McGarry MP, Shim KG, Nguyen DT et al (2013) Expression of the secondary granule proteins major basic protein 1 (MBP-1) and eosinophil peroxidase (EPX) is required for eosinophilopoiesis in mice. Blood 122(5):781–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du J, Stankiewicz MJ, Liu Y, Xi Q, Schmitz JE, Lekstrom-Himes JA et al (2002) Novel combinatorial interactions of GATA-1, PU.1, and C/EBPepsilon isoforms regulate transcription of the gene encoding eosinophil granule major basic protein. J Biol Chem 277(45):43481–43494

    Article  CAS  PubMed  Google Scholar 

  • Ebert BL, Bunn HF (1999) Regulation of the erythropoietin gene. Blood 94(6):1864–1877

    CAS  PubMed  Google Scholar 

  • Eckelhart E, Warsch W, Zebedin E, Simma O, Stoiber D, Kolbe T et al (2011) A novel Ncr1-Cre mouse reveals the essential role of STAT5 for NK-cell survival and development. Blood 117(5):1565–1573

    Article  CAS  PubMed  Google Scholar 

  • Emmons RV, Reid DM, Cohen RL, Meng G, Young NS, Dunbar CE et al (1996) Human thrombopoietin levels are high when thrombocytopenia is due to megakaryocyte deficiency and low when due to increased platelet destruction. Blood 87(10):4068–4071

    CAS  PubMed  Google Scholar 

  • Feinberg MW, Wara AK, Cao Z, Lebedeva MA, Rosenbauer F, Iwasaki H et al (2007) The Kruppel-like factor KLF4 is a critical regulator of monocyte differentiation. EMBO J 26(18):4138–4148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Firth MA, Madera S, Beaulieu AM, Gasteiger G, Castillo EF, Schluns KS et al (2013) Nfil3-independent lineage maintenance and antiviral response of natural killer cells. J Exp Med 210(13):2981–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimaki S, Harigae H, Sugawara T, Takasawa N, Sasaki T, Kaku M (2001) Decreased expression of transcription factor GATA-2 in haematopoietic stem cells in patients with aplastic anaemia. Br J Haematol 113(1):52–57

    Article  CAS  PubMed  Google Scholar 

  • Gascoyne DM, Long E, Veiga-Fernandes H, de Boer J, Williams O, Seddon B et al (2009) The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol 10(10):1118–1124

    Article  CAS  PubMed  Google Scholar 

  • Geiger TL, Sun JC (2016) Development and maturation of natural killer cells. Curr Opin Immunol 39:82–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giger KM, Kalfa TA (2015) Phylogenetic and ontogenetic view of erythroblastic islands. Biomed Res Int 2015:873628

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Goetz CA, Harmon IR, O’Neil JJ, Burchill MA, Farrar MA (2004) STAT5 activation underlies IL7 receptor-dependent B cell development. J Immunol 172(8):4770–4778

    Article  CAS  PubMed  Google Scholar 

  • Gombart AF, Shiohara M, Kwok SH, Agematsu K, Komiyama A, Koeffler HP (2001) Neutrophil-specific granule deficiency: homozygous recessive inheritance of a frameshift mutation in the gene encoding transcription factor CCAAT/enhancer binding protein--epsilon. Blood 97(9):2561–2567

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964

    Article  CAS  PubMed  Google Scholar 

  • Gordon SM, Chaix J, Rupp LJ, Wu J, Madera S, Sun JC et al (2012) The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 36(1):55–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo T, Wang X, Qu Y, Yin Y, Jing T, Zhang Q (2015) Megakaryopoiesis and platelet production: insight into hematopoietic stem cell proliferation and differentiation. Stem Cell Investig 2:3

    PubMed  PubMed Central  Google Scholar 

  • Gurney AL, Carver-Moore K, de Sauvage FJ, Moore MW (1994) Thrombocytopenia in c-mpl-deficient mice. Science 265(5177):1445–1447

    Article  CAS  PubMed  Google Scholar 

  • Hadland BK, Huppert SS, Kanungo J, Xue Y, Jiang R, Gridley T et al (2004) A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood 104(10):3097–3105

    Article  CAS  PubMed  Google Scholar 

  • Hagman J, Belanger C, Travis A, Turck CW, Grosschedl R (1993) Cloning and functional characterization of early B-cell factor, a regulator of lymphocyte-specific gene expression. Genes Dev 7(5):760–773

    Article  CAS  PubMed  Google Scholar 

  • Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM, Punt JA et al (2011) The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat Immunol 12(8):778–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart A, Melet F, Grossfeld P, Chien K, Jones C, Tunnacliffe A et al (2000) Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 13(2):167–177

    Article  CAS  PubMed  Google Scholar 

  • Heizmann B, Kastner P, Chan S (2013) Ikaros is absolutely required for pre-B cell differentiation by attenuating IL-7 signals. J Exp Med 210(13):2823–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hock H, Hamblen MJ, Rooke HM, Schindler JW, Saleque S, Fujiwara Y et al (2004) Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431(7011):1002–1007

    Article  CAS  PubMed  Google Scholar 

  • Huang HT, Kathrein KL, Barton A, Gitlin Z, Huang YH, Ward TP et al (2013) A network of epigenetic regulators guides developmental haematopoiesis in vivo. Nat Cell Biol 15(12):1516–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huntington ND, Puthalakath H, Gunn P, Naik E, Michalak EM, Smyth MJ et al (2007) Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat Immunol 8(8):856–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichikawa M, Asai T, Saito T, Seo S, Yamazaki I, Yamagata T et al (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10(3):299–304

    Article  CAS  PubMed  Google Scholar 

  • Imada K, Bloom ET, Nakajima H, Horvath-Arcidiacono JA, Udy GB, Davey HW et al (1998) Stat5b is essential for natural killer cell-mediated proliferation and cytolytic activity. J Exp Med 188(11):2067–2074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao J, Dragomir AC, Kocabayoglu P, Rahman AH, Chow A, Hashimoto D et al (2014) Central role of conventional dendritic cells in regulation of bone marrow release and survival of neutrophils. J Immunol 192(7):3374–3382

    Article  CAS  PubMed  Google Scholar 

  • Junt T, Schulze H, Chen Z, Massberg S, Goerge T, Krueger A et al (2007) Dynamic visualization of thrombopoiesis within bone marrow. Science 317(5845):1767–1770

    Article  CAS  PubMed  Google Scholar 

  • Kamizono S, Duncan GS, Seidel MG, Morimoto A, Hamada K, Grosveld G et al (2009) Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med 206(13):2977–2986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushansky K (2008) Historical review: megakaryopoiesis and thrombopoiesis. Blood 111(3):981–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushansky K, Broudy VC, Lin N, Jorgensen MJ, McCarty J, Fox N et al (1995) Thrombopoietin, the Mp1 ligand, is essential for full megakaryocyte development. Proc Natl Acad Sci U S A 92(8):3234–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M et al (2000) Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191(5):771–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna-Gupta A, Zibello T, Sun H, Gaines P, Berliner N (2003) Chromatin immunoprecipitation (ChIP) studies indicate a role for CCAAT enhancer binding proteins alpha and epsilon (C/EBP alpha and C/EBP epsilon ) and CDP/cut in myeloid maturation-induced lactoferrin gene expression. Blood 101(9):3460–3468

    Article  CAS  PubMed  Google Scholar 

  • Kim BS, Uhm TG, Lee SK, Lee SH, Kang JH, Park CS et al (2010) The crucial role of GATA-1 in CCR3 gene transcription: modulated balance by multiple GATA elements in the CCR3 regulatory region. J Immunol 185(11):6866–6875

    Article  CAS  PubMed  Google Scholar 

  • Knudsen KJ, Rehn M, Hasemann MS, Rapin N, Bagger FO, Ohlsson E et al (2015) ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation. Genes Dev 29(18):1915–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA, Dai WJ et al (1996) IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Korolnek T, Hamza I (2015) Macrophages and iron trafficking at the birth and death of red cells. Blood 125(19):2893–2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosan C, Godmann M (2016) Genetic and epigenetic mechanisms that maintain hematopoietic stem cell function. Stem Cells Int 2016:5178965

    Article  PubMed  CAS  Google Scholar 

  • Lacorazza HD, Miyazaki Y, Di Cristofano A, Deblasio A, Hedvat C, Zhang J et al (2002) The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. Immunity 17(4):437–449

    Article  CAS  PubMed  Google Scholar 

  • Lantz CS, Boesiger J, Song CH, Mach N, Kobayashi T, Mulligan RC et al (1998) Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392(6671):90–93

    Article  CAS  PubMed  Google Scholar 

  • Laouar Y, Welte T, Fu XY, Flavell RA (2003) STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity 19(6):903–912

    Article  CAS  PubMed  Google Scholar 

  • Laurenti E, Varnum-Finney B, Wilson A, Ferrero I, Blanco-Bose WE, Ehninger A et al (2008) Hematopoietic stem cell function and survival depend on c-Myc and N-Myc activity. Cell Stem Cell 3(6):611–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AH, Iwakoshi NN, Glimcher LH (2003) XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 23(21):7448–7459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JJ, Jacobsen EA, Ochkur SI, McGarry MP, Condjella RM, Doyle AD et al (2012) Human versus mouse eosinophils: “that which we call an eosinophil, by any other name would stain as red”. J Allergy Clin Immunol 130(3):572–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lekstrom-Himes JA, Dorman SE, Kopar P, Holland SM, Gallin JI (1999) Neutrophil-specific granule deficiency results from a novel mutation with loss of function of the transcription factor CCAAT/enhancer binding protein epsilon. J Exp Med 189(11):1847–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al (2005) Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 7(4):387–397

    Article  CAS  PubMed  Google Scholar 

  • Li FQ, Person RE, Takemaru K, Williams K, Meade-White K, Ozsahin AH et al (2004) Lymphoid enhancer factor-1 links two hereditary leukemia syndromes through core-binding factor alpha regulation of ELA2. J Biol Chem 279(4):2873–2884

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Qi X, Liu B, Huang H (2015) The STAT5-GATA2 pathway is critical in basophil and mast cell differentiation and maintenance. J Immunol 194(9):4328–4338

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Grosschedl R (1995) Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376(6537):263–267

    Article  CAS  PubMed  Google Scholar 

  • Lordier L, Bluteau D, Jalil A, Legrand C, Pan J, Rameau P et al (2012) RUNX1-induced silencing of non-muscle myosin heavy chain IIB contributes to megakaryocyte polyploidization. Nat Commun 3:717

    Article  PubMed  CAS  Google Scholar 

  • Male V, Nisoli I, Kostrzewski T, Allan DS, Carlyle JR, Lord GM et al (2014) The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J Exp Med 211(4):635–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovsky E et al (2000) Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95(11):3489–3497

    CAS  PubMed  Google Scholar 

  • McKercher SR, Henkel GW, Maki RA (1999) The transcription factor PU.1 does not regulate lineage commitment but has lineage-specific effects. J Leukoc Biol 66(5):727–732

    Article  CAS  PubMed  Google Scholar 

  • Metcalf D, Ng AP, Baldwin TM, Di Rago L, Mifsud S (2013) Concordant mast cell and basophil production by individual hematopoietic blast colony-forming cells. Proc Natl Acad Sci U S A 110(22):9031–9035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Middendorp S, Dingjan GM, Hendriks RW (2002) Impaired precursor B cell differentiation in Bruton’s tyrosine kinase-deficient mice. J Immunol 168(6):2695–2703

    Article  CAS  PubMed  Google Scholar 

  • Mishra A, Sullivan L, Caligiuri MA (2014) Molecular pathways: interleukin-15 signaling in health and in cancer. Clin Cancer Res 20(8):2044–2050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K (1998) Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93(3):397–409

    Article  CAS  PubMed  Google Scholar 

  • Nishinakamura R, Miyajima A, Mee PJ, Tybulewicz VL, Murray R (1996) Hematopoiesis in mice lacking the entire granulocyte-macrophage colony-stimulating factor/interleukin-3/interleukin-5 functions. Blood 88(7):2458–2464

    CAS  PubMed  Google Scholar 

  • Niswander LM, Fegan KH, Kingsley PD, McGrath KE, Palis J (2014) SDF-1 dynamically mediates megakaryocyte niche occupancy and thrombopoiesis at steady state and following radiation injury. Blood 124(2):277–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nosaka T, van Deursen JM, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP et al (1995) Defective lymphoid development in mice lacking Jak3. Science 270(5237):800–802

    Article  CAS  PubMed  Google Scholar 

  • Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB et al (2013) Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502(7470):245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nutt SL, Heavey B, Rolink AG, Busslinger M (1999) Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401(6753):556–562

    Article  CAS  PubMed  Google Scholar 

  • O’Riordan M, Grosschedl R (1999) Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity 11(1):21–31

    Article  PubMed  Google Scholar 

  • Oguro H, Iwama A, Morita Y, Kamijo T, van Lohuizen M, Nakauchi H (2006) Differential impact of Ink4a and Arf on hematopoietic stem cells and their bone marrow microenvironment in Bmi1-deficient mice. J Exp Med 203(10):2247–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oguro H, Yuan J, Ichikawa H, Ikawa T, Yamazaki S, Kawamoto H et al (2010) Poised lineage specification in multipotential hematopoietic stem and progenitor cells by the polycomb protein Bmi1. Cell Stem Cell 6(3):279–286

    Article  CAS  PubMed  Google Scholar 

  • Ono Y, Wang Y, Suzuki H, Okamoto S, Ikeda Y, Murata M et al (2012) Induction of functional platelets from mouse and human fibroblasts by p45NF-E2/Maf. Blood 120(18):3812–3821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostuni R, Natoli G, Cassatella MA, Tamassia N (2016) Epigenetic regulation of neutrophil development and function. Semin Immunol 28(2):83–93

    Article  CAS  PubMed  Google Scholar 

  • Palis J (2014) Primitive and definitive erythropoiesis in mammals. Front Physiol 5:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul F, Arkin Y, Giladi A, Jaitin DA, Kenigsberg E, Keren-Shaul H et al (2015) Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163(7):1663–1677

    Article  CAS  PubMed  Google Scholar 

  • Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON et al (2012) Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet 380(9842):651–659

    Article  CAS  PubMed  Google Scholar 

  • Perie L, Duffy KR, Kok L, de Boer RJ, Schumacher TN (2015) The branching point in erythro-myeloid differentiation. Cell 163(7):1655–1662

    Article  CAS  PubMed  Google Scholar 

  • Perkins AC, Sharpe AH, Orkin SH (1995) Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375(6529):318–322

    Article  CAS  PubMed  Google Scholar 

  • Perkins A, Xu X, Higgs DR, Patrinos GP, Arnaud L, Bieker JJ et al (2016) Kruppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants. Blood 127(15):1856–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Person RE, Li FQ, Duan Z, Benson KF, Wechsler J, Papadaki HA et al (2003) Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet 34(3):308–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peschon JJ, Morrissey PJ, Grabstein KH, Ramsdell FJ, Maraskovsky E, Gliniak BC et al (1994) Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 180(5):1955–1960

    Article  CAS  PubMed  Google Scholar 

  • Pevny L, Simon MC, Robertson E, Klein WH, Tsai SF, D’Agati V et al (1991) Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349(6306):257–260

    Article  CAS  PubMed  Google Scholar 

  • Pevny L, Lin CS, D’Agati V, Simon MC, Orkin SH, Costantini F (1995) Development of hematopoietic cells lacking transcription factor GATA-1. Development 121(1):163–172

    CAS  PubMed  Google Scholar 

  • Pitchford SC, Lodie T, Rankin SM (2012) VEGFR1 stimulates a CXCR4-dependent translocation of megakaryocytes to the vascular niche, enhancing platelet production in mice. Blood 120(14):2787–2795

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Hong J, Chaves L, Zhuang Y, Chen Y, Wang D et al (2013) Antagonistic regulation by the transcription factors C/EBPalpha and MITF specifies basophil and mast cell fates. Immunity 39(1):97–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothenberg EV (2014) Transcriptional control of early T and B cell developmental choices. Annu Rev Immunol 32:283–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki H, Kurotaki D, Osato N, Sato H, Sasaki I, Koizumi S et al (2015) Transcription factor IRF8 plays a critical role in the development of murine basophils and mast cells. Blood 125(2):358–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki H, Kurotaki D, Tamura T (2016) Regulation of basophil and mast cell development by transcription factors. Allergol Int 65(2):127–134

    Article  CAS  PubMed  Google Scholar 

  • Satpathy AT, Wu X, Albring JC, Murphy KM (2012) Re(de)fining the dendritic cell lineage. Nat Immunol 13(12):1145–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schonheit J, Kuhl C, Gebhardt ML, Klett FF, Riemke P, Scheller M et al (2013) PU.1 level-directed chromatin structure remodeling at the Irf8 gene drives dendritic cell commitment. Cell Rep 3(5):1617–1628

    Article  PubMed  CAS  Google Scholar 

  • Schwickert TA, Tagoh H, Gultekin S, Dakic A, Axelsson E, Minnich M et al (2014) Stage-specific control of early B cell development by the transcription factor Ikaros. Nat Immunol 15(3):283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott EW, Fisher RC, Olson MC, Kehrli EW, Simon MC, Singh H (1997) PU.1 functions in a cell-autonomous manner to control the differentiation of multipotential lymphoid-myeloid progenitors. Immunity 6(4):437–447

    Article  CAS  PubMed  Google Scholar 

  • Seita J, Weissman IL (2010) Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2(6):640–653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivdasani RA, Rosenblatt MF, Zucker-Franklin D, Jackson CW, Hunt P, Saris CJ et al (1995) Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81(5):695–704

    Article  CAS  PubMed  Google Scholar 

  • Shivdasani RA, Fujiwara Y, McDevitt MA, Orkin SH (1997) A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J 16(13):3965–3973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silberstein L, Goncalves KA, Kharchenko PV, Turcotte R, Kfoury Y, Mercier F et al (2016) Proximity-based differential single-cell analysis of the niche to identify stem/progenitor cell regulators. Cell Stem Cell 19:530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siracusa MC, Saenz SA, Hill DA, Kim BS, Headley MB, Doering TA et al (2011) TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477(7363):229–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skokowa J, Cario G, Uenalan M, Schambach A, Germeshausen M, Battmer K et al (2006) LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia. Nat Med 12(10):1191–1197

    Article  CAS  PubMed  Google Scholar 

  • Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF (2001) Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood 98(12):3261–3273

    Article  CAS  PubMed  Google Scholar 

  • Stark MA, Huo Y, Burcin TL, Morris MA, Olson TS, Ley K (2005) Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22(3):285–294

    Article  CAS  PubMed  Google Scholar 

  • Tamura T, Kurotaki D, Koizumi S (2015) Regulation of myelopoiesis by the transcription factor IRF8. Int J Hematol 101(4):342–351

    Article  CAS  PubMed  Google Scholar 

  • Taoudi S, Bee T, Hilton A, Knezevic K, Scott J, Willson TA et al (2011) ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification. Genes Dev 25(3):251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terry RL, Miller SD (2014) Molecular control of monocyte development. Cell Immunol 291(1-2):16–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokoyoda K, Egawa T, Sugiyama T, Choi BI, Nagasawa T (2004) Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20(6):707–718

    Article  CAS  PubMed  Google Scholar 

  • Tominaga A, Takaki S, Koyama N, Katoh S, Matsumoto R, Migita M et al (1991) Transgenic mice expressing a B cell growth and differentiation factor gene (interleukin 5) develop eosinophilia and autoantibody production. J Exp Med 173(2):429–437

    Article  CAS  PubMed  Google Scholar 

  • Townsend MJ, Weinmann AS, Matsuda JL, Salomon R, Farnham PJ, Biron CA et al (2004) T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity 20(4):477–494

    Article  CAS  PubMed  Google Scholar 

  • Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M et al (1994) An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371(6494):221–226

    Article  CAS  PubMed  Google Scholar 

  • Tsang AP, Visvader JE, Turner CA, Fujiwara Y, Yu C, Weiss MJ et al (1997) FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90(1):109–119

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi-Ishii Y, Hasebe T, Nagaoka I (2000) Role of CCAAT/enhancer-binding protein site in transcription of human neutrophil peptide-1 and -3 defensin genes. J Immunol 164(6):3264–3273

    Article  CAS  PubMed  Google Scholar 

  • Van Gool F, Molofsky AB, Morar MM, Rosenzwajg M, Liang HE, Klatzmann D et al (2014) Interleukin-5-producing group 2 innate lymphoid cells control eosinophilia induced by interleukin-2 therapy. Blood 124(24):3572–3576

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Visvader JE, Elefanty AG, Strasser A, Adams JM (1992) GATA-1 but not SCL induces megakaryocytic differentiation in an early myeloid line. EMBO J 11(12):4557–4564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voehringer D (2012) Basophil modulation by cytokine instruction. Eur J Immunol 42(10):2544–2550

    Article  CAS  PubMed  Google Scholar 

  • Wada T, Akagi T, Muraoka M, Toma T, Kaji K, Agematsu K et al (2015) A novel in-frame deletion in the leucine zipper domain of C/EBPepsilon leads to neutrophil-specific granule deficiency. J Immunol 195(1):80–86

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Crispino JD, Letting DL, Nakazawa M, Poncz M, Blobel GA (2002) Control of megakaryocyte-specific gene expression by GATA-1 and FOG-1: role of Ets transcription factors. EMBO J 21(19):5225–5234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Diao D, Shi Z, Zhu X, Gao Y, Gao S et al (2016) SIRT6 controls hematopoietic stem cell homeostasis through epigenetic regulation of wnt signaling. Cell Stem Cell 18(4):495–507

    Article  CAS  PubMed  Google Scholar 

  • Waskow C, Liu K, Darrasse-Jeze G, Guermonprez P, Ginhoux F, Merad M et al (2008) The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 9(6):676–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson AC, Gottgens B (2013) Transcriptional regulation of haematopoietic stem cells. Adv Exp Med Biol 786:187–212

    Article  CAS  PubMed  Google Scholar 

  • Wilson A, MacDonald HR, Radtke F (2001) Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J Exp Med 194(7):1003–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM et al (2004) c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18(22):2747–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Liu X, Jaenisch R, Lodish HF (1995) Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83(1):59–67

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML (1999) Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126(16):3597–3605

    CAS  PubMed  Google Scholar 

  • Wu JY, Purton LE, Rodda SJ, Chen M, Weinstein LS, McMahon AP et al (2008) Osteoblastic regulation of B lymphopoiesis is mediated by Gs{alpha}-dependent signaling pathways. Proc Natl Acad Sci U S A 105(44):16976–16981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi Y, Ackerman SJ, Minegishi N, Takiguchi M, Yamamoto M, Suda T (1998) Mechanisms of transcription in eosinophils: GATA-1, but not GATA-2, transactivates the promoter of the eosinophil granule major basic protein gene. Blood 91(9):3447–3458

    CAS  PubMed  Google Scholar 

  • Yamanaka R, Barlow C, Lekstrom-Himes J, Castilla LH, Liu PP, Eckhaus M et al (1997) Impaired granulopoiesis, myelodysplasia, and early lethality in CCAAT/enhancer binding protein epsilon-deficient mice. Proc Natl Acad Sci U S A 94(24):13187–13192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Z, Cui Y, Watford WT, Bream JH, Yamaoka K, Hissong BD et al (2006) Stat5a/b are essential for normal lymphoid development and differentiation. Proc Natl Acad Sci U S A 103(4):1000–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S et al (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397(6721):702–706

    Article  CAS  PubMed  Google Scholar 

  • Yokota T, Sudo T, Ishibashi T, Doi Y, Ichii M, Orirani K et al (2013) Complementary regulation of early B-lymphoid differentiation by genetic and epigenetic mechanisms. Int J Hematol 98(4):382–389

    Article  PubMed  Google Scholar 

  • Yoshida T, Ikuta K, Sugaya H, Maki K, Takagi M, Kanazawa H et al (1996) Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5R alpha-deficient mice. Immunity 4(5):483–494

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Cantor AB, Yang H, Browne C, Wells RA, Fujiwara Y et al (2002) Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J Exp Med 195(11):1387–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu VW, Saez B, Cook C, Lotinun S, Pardo-Saganta A, Wang YH et al (2015) Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. J Exp Med 212(5):759–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanjani ED, Ascensao JL, McGlave PB, Banisadre M, Ash RC (1981) Studies on the liver to kidney switch of erythropoietin production. J Clin Invest 67(4):1183–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng H, Yucel R, Kosan C, Klein-Hitpass L, Moroy T (2004) Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. EMBO J 23(20):4116–4125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DE, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG (1997) Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. Proc Natl Acad Sci U S A 94(2):569–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Chen G, Manwani D, Mortha A, Xu C, Faith JJ et al (2015) Neutrophil ageing is regulated by the microbiome. Nature 525(7570):528–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Su J, Jeong M, Ko M, Huang Y, Park HJ et al (2016) DNMT3A and TET2 compete and cooperate to repress lineage-specific transcription factors in hematopoietic stem cells. Nat Genet 48:1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang Y, Soriano P, Weintraub H (1994) The helix-loop-helix gene E2A is required for B cell formation. Cell 79(5):875–884

    Article  CAS  PubMed  Google Scholar 

  • Zook EC, Kee BL (2016) Development of innate lymphoid cells. Nat Immunol 17(7):775–782

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen M. Sakamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rankin, E.B., Sakamoto, K.M. (2018). The Cellular and Molecular Mechanisms of Hematopoiesis. In: Kupfer, G., Reaman, G., Smith, F. (eds) Bone Marrow Failure. Pediatric Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-61421-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61421-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61420-5

  • Online ISBN: 978-3-319-61421-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics